
BS-tree: A gapped data-parallel B-tree
Dimitrios Tsitsigkos

Archimedes, Athena RC
Athens, Greece

dtsitsigkos@athenarc.gr

Achilleas Michalopoulos
CSE Dept, U. of Ioannina

Ioannina, Greece
amichalopoulos@cse.uoi.gr

Nikos Mamoulis
U. of Ioannina & Archimedes, Athena RC

Ioannina, Greece
nikos@cs.uoi.gr

Manolis Terrovitis
IMSI, Athena RC
Athens, Greece

mter@athenarc.gr

Abstract—We propose BS-tree, an in-memory implementation
of the B+-tree that adopts the structure of the disk-based index
(i.e., a balanced, multiway tree), setting the node size to a
memory block that can be processed fast and in parallel using
SIMD instructions. A novel feature of the BS-tree is that it
enables gaps (unused positions) within nodes by duplicating
key values. This allows (i) branchless SIMD search within each
node, and (ii) branchless update operations in nodes without key
shifting. We implement a frame of reference (FOR) compression
mechanism, which allows nodes to have varying capacities, and
can greatly decrease the memory footprint of BS-tree. We
compare our approach to existing main-memory indices and
learned indices under different workloads of queries and updates
and demonstrate its robustness and superiority compared to
previous work in single- and multi-threaded processing.

Index Terms—indexing, main memory, data parallelism

I. INTRODUCTION

The B+-tree is the dominant indexing method for DBMSs,
due to its low and guaranteed cost for (equality and range)
query processing and updates. It was originally proposed as a
disk-based index, where the objective is to minimize the I/O
cost of operations. As memories become larger and cheaper,
main-memory and hardware-specific implementations of the
B+-tree [14], [16], [25], [32], [33], [38], [40], [44], [52], [53],
[58], [66], as well as alternative access methods for in-memory
data [10], [13], [15], [36], [42], [48], [50], [67], [69] have been
proposed. The optimization objective in all these methods is
minimizing the computational cost and cache misses during
search. More recently, learned indices [21], [24], [26], [35],
[37], [45], [64], [65], [70], [71], which replace the inner nodes
of the B+-tree by ML models have been suggested as a way
for reducing the memory footprint of indexing and accelerating
search at the same time.

In this paper, we propose BS-tree, a B+-tree for main
memory data, which is optimized for modern commodity
hardware and data parallelism. BS-tree adopts the structure
of the disk-based B+-tree (i.e., a balanced, multiway tree),
setting the node size to a memory block that can be processed
in parallel. At the heart of our proposal lies a data-parallel
successor operator (succ), implemented using SIMD, which
is applied at each tree level for branching during search and
updates and for locating the search key position at the leaf
level. To facilitate fast updates, without affecting SIMD-based
search, we propose a novel implementation for gaps (unused
positions) by duplicating keys. The main idea is that we write
in each unused slot the next used key value in the node or a

global MAXKEY value if all subsequent slots are unused. Our
BS-tree construction algorithm initializes sparse leaf nodes
with intentional gaps in them, in order to (i) delay possible
splits and (ii) reduce data shifting at insertions. Splitting also
adds gaps proactively. Finally, we apply a frame-of-reference
(FOR) based compression method that allows nodes that use
fixed-size memory blocks to have varying capacities, which
saves space and increases data parallelism.

Novelty and contributions. There already exist several
SIMD-based implementations of B-trees and k-ary search [28],
[33], [38], [56], [58], [66]. In addition, updatable learned
indices [21] use gaps to facilitate fast updates. Finally, key
compression in B-trees has also been studied in previous
work [14]. To our knowledge, our proposed BS-tree is the
first B+-tree implementation that gracefully combines all these
features, achieving at the same time minimal storage and high
throughput. In particular, the use of duplicate key vales in
unused gaps/slots allows (i) branchless, data-parallel SIMD
search at each node, and (ii) efficient key insertions and
deletions with limited shifting of keys within each node. In
addition, our compression scheme allows for direct appli-
cation of data-parallel search on compressed nodes. To our
knowledge, using duplicate keys in gaps within each node for
efficient data-parallel search and updates at the same time is
novel and has not been supported by previous B-tree imple-
mentations [28]. We implement a version of optimistic lock
coupling in BS-tree for concurrency control and extensively
compare BS-tree with open-source single- and multi-threaded
implementations of state-of-the-art non-learned and learned
indices on widely used real datasets, to find that BS-tree
and its compressed version consistently prevail in different
workloads of reads and updates, typically achieving 1.5x-2x
higher throughput than the best competitor.

Outline Section II presents related work. The BS-tree is
described in Section III and its updates and construction
in Section IV. Section V describes BS-tree compression.
Implementation details and concurrency control are discussed
in Section VI and VII, respectively. Section VIII includes our
experimental evaluation. We conclude in Section IX.

II. RELATED WORK

A. B-tree

The B+-tree is considered the de-facto access method for
relational data, having substantial advantages over hash-based

indexing with respect to construction cost, support of range
queries, sorted data access, and concurrency control [23], [27],
[28]. As memory sizes grow, the interest has shifted to in-
memory access methods [68]. Rao and Ross [52] were the
first to consider the impact of cache misses in memory-based
data structures; they proposed Cache-Sensitive Search Trees
(CSS-trees), in which every node has the same size as the
cache-line of the machine and does not need to keep pointers
for the links between nodes, but offsets that can be calculated
by arithmentic operations. Rao and Ross [53] also proposed
the Cache Sensitive B+-tree (CSB+tree), which achieves cache
performance close to CSS-Trees, while having the advantages
of a B+-tree. Chen et al. [18], [19] showed how prefetching
can significantly improve the performance of index structures
by reducing memory access latency. The pkB-tree [14] is an
in-memory variant of the B-tree that uses partial-keys (fixed-
size parts of keys), which reduce cache misses and improve
search performance. Zhou and Ross [73] investigated buffering
techniques, based on fixed-size or variable-sized buffers, for
memory index structures, aiming to avoid cache thrashing
and to improve the performance of bulk lookup in relation
to a sequence of single lookups. Graefe and Larson [29]
surveyed techniques that improve the perfomance of B+-tree
by exploting CPU caches.

B. (Data) parallelism in B-trees

The advent of SIMD instructions and GPUs opened new
perspectives for in-memory index structures. In an early work,
Zhou and Ross [72] explored the use of SIMD to parallelize
key database operations (such as scans, joins, and filtering),
minimizing branch mispredictions. Schlegel et al. [56] present
methods for SIMD-based k-ary search (find which out of k
partitions contains a search key). FAST [33] optimizes k-way
tree search by leveraging architecture-specific features such
as cache locality, SIMD parallelism on CPUs, and massive
parallelism on GPUs. [25] introduced a “braided” B+-tree
structure optimized for parallel searches on GPUs, enabling
lock-free traversal using additional pointers. Kaczmarski [32]
proposed a bottom-up B+-tree construction and maintenance
technique using CPU and GPU for bulk-loading and updates.
Bw-Tree [44] is a highly scalable and latch-free B+-tree
variant optimized for modern hardware platforms, including
multi-core processors and flash storage. Hybrid B+-tree [58]
leverages both CPU and GPU resources to optimize in-
memory indexing, by dynamically balancing the workload
between the CPU and the GPU. Yan et al. [66] proposed a B+-
tree tailored for GPU and SIMD architectures. This structure
decouples the “key region”, which contains keys of the B+-
tree with the “child region”, which is organized as a prefix-
sum array and stores only each node’s first child index in
the key region. Kwon et al. [38] proposed DB+-tree, a B+-
tree with partial keys, that utilizes SIMD and other sequential
instructions for fast branching. PALM [57] is a parallel latch-
free variant of the B+-tree, which is optimized for multi-core
processors, enabling concurrent search and update operations.
Other works explore the implementation of B-trees on flash

memory [8], [11], [30], [31], [46], [51], [60], [63], non-volatile
memory [20], [47] and hardware transactional memory [59].

C. Other in-memory access methods

Besides B-trees, other data structures have also been used
for in-memory indexing, especially trie-based ones, such as
the HAT-trie [9], [10], the generalized prefix tree (trie) [15],
KISS-TREE [36], and Masstree [48]. Leis et al. [42] proposed
a fast and space-efficient in-memory trie called ART, which
dynamically adjusts its node sizes providing a compact and
cache-efficient representation. ART uses lazy expansion and
path compression to improve space utilization and search per-
formance. Leis et al. proposed two synchronization protocols
for ART in [43], which have good scalability despite relying on
locks: optimistic lock coupling and the read-optimized write
exclusion (ROWEX) protocol. Height Optimized Trie (HOT)
[13] is an in-memory trie-based index that reduces tree height
through path compression and node merging. SuRF (Succinct
Range Filter) [69] leverages succinct tries to provide a space-
efficient solution for range query filtering.

D. Learned Indexing

The advent of fast and accurate machine learning techniques
inspired the design of a new type of index structure, called
learned index [37]. The main idea is to learn a cumulative
distribution function (CDF) of the keys and define a Recursive
Model Index (RMI) that replaces the inner nodes of a B+-
tree by a hierarchy of models that can predict very fast
the position of the search key. FITing tree [26] and PGM-
index [24] build upon RMI with a focus on improving model
performance. with provable worst-case bounds on query time
and space usage. The RadixSpline (RS) [35] learned index can
be constructed in a single traversal of sorted data. ALEX [21]
is an updatable learned index structure, based on RMI. ALEX
utilizes a gapped array layout that gracefully distributes extra
space between elements based on the model’s predictions,
enabling faster updates and lookups by exponential search.
Other updatable learned indices include CARMI [70], NFL
[65], LIPP [64], and DILI [45], and Hyper [71]. Refs. [34],
[49], [62] provide comprehensive evaluations on updatable
learned indices and traditional indices including many impor-
tant findings, based on tests on several real-world datasets.

III. THE BS -TREE

The BS-tree follows the structure of the B+-tree. Each
internal node of the tree fits up to N references to nodes at
the lower level and up to N − 1 keys. Leaf nodes contain rid-
key pairs, where a record-id (rid) is the address (potentially on
the disk) of the record that has the corresponding key value.
We assume that keys are unique; in case of duplicate keys,
one key is kept in the index with a reference to a block with
the rid’s of all records having that key. The storage of the
rid’s is decoupled from the storage of the keys, i.e., they are
stored in two different (aligned) arrays, such that the rid array
is accessed only if necessary (i.e., only if the key is found
and we need access to the corresponding record). Similarly,

2

the storage of keys in an internal node is decoupled from the
storage of children addresses, to facilitate fast search, as we
explain later. Each leaf node hosts the address of the next
leaf in the total key order to facilitate range queries. For the
BS-tree nodes we use a value of N that facilitates fast and
parallel search, as we will explain in Sections V and VI. For
the efficient handling of updates, we allow gaps (i.e., unused
slots) in nodes, similarly to previous work [21], [45], [64], as
will be discussed in Section IV.

Figure 1 shows an example of a BS-tree, where each node
holds up to N − 1 = 4 keys. Each non-leaf node is shown as
an array of N node pointers (bottom) and N − 1 keys (top)
that work as separators. All keys in the subtree pointed by the
i-th pointer are strictly smaller than the i-th key and greater
than or equal to the (i − 1)-th key (if i > 0). Any unused
key slots at the end of each node carry a special MAXKEY
value (denoted by ∞ in the figure), which is larger than the
maximum possible value in the key domain. For example, if
keys are unsigned 64-bit integers, MAXKEY = 264 − 1 and
key values range in [0, 264 − 2].Basic Structure

52 104

11 20 31 ∞ …

2 5 8 ∞ 11 13 14 18

61 75 81 96

164 ∞

232 245 258 ∞

258 260 261 ∞…

Fig. 1: Example of BS-tree

A. Search within a BS-tree node

We now elaborate on the implementation of branching at
each node of the BS-tree, i.e., selecting the next node to
visit. Traditionally, at each visited node, starting from the root,
finding the smallest key which is strictly greater that the query
key k is done either by binary search or by linearly scanning

0

200

400

600

800

1000

8 16 32 64 128 256

Th
ro

ug
hp

ut
 (M

op
/s)

Array Size

Data Space: [0, 264 -1]

Binary Linear Counting SIMD-based

0

200

400

600

800

1000

16 32 64 128 256 512

Th
ro

ug
hp

ut
 (M

op
/s)

Array Size

Data Space: [0, 232 -1]

Binary Linear Counting SIMD-based

(a) uint64 (b) uint32

0

200

400

600

800

1000

32 64 128 256 512 1024

Th
ro

ug
hp

ut
 (M

op
/s)

Array Size

Data Space: [0, 216 -1]

Binary Linear Counting SIMD-based

(c) uint16
Fig. 2: Successor search techniques in small uint arrays

the entries until we find the first key greater than k. Both these
approaches have high cost due to branch mispredictions.

We denote by succ> the operator that finds the smallest key
position which is strictly greater than the query key k (used
in non-leaf nodes) and by succ≥ the finding of the smallest
key position which is greater than or equal to k (used in leaf
nodes). For example, in Figure 1, succ>124(root) = 2, as the
smallest key which is greater than 124 is at position 2. succ>
is applied at each non-leaf node along the path from the root
to the leaf that includes the (first) search result.

We use an efficient implementation of succ>, which ex-
ploits data parallelism (i.e., SIMD instructions) and does not
include if statements or while statements with an uncertain
number of loops; hence, it does not involve search decisions.
Specifically, let v be a node and k be the search key. Then,
succ>k(v) = |{x : x ∈ v.keys ∧ k ≥ x}|, where |S| denotes
cardinality of S. Based on this, succ>k(v), for uint64 keys
can be implemented by code Snippet 1. The corresponding
SIMD-fied code (AVX 512) is Snippet 2, where Line 6 loads
the node keys vector, Line 7 creates a comparison mask which
has 1 at key positions where the search key is greater than the
node key, and Line 8 counts the 1’s in the mask. As the code
snippets do not include if-statements, they do not incur branch
mispredictions. CAPACITY is the (fixed) maximum capacity
of the node, so the number of iterations of the for-loop is
hardwired; all these favoring data parallelism.

Snippet 1: Counting search
1 int succG(Node *v, uint64 skey) {
2 int count = 0;

3 for(int i=0; i<CAPACITY; i++)
4 count += (skey >= v->keys[i]);
5 return count;
6 }

Snippet 2: SIMD-based counting search (AVX 512)
1 int succG_SIMD(Node *v, uint64 skey) {
2 int count = 0;
3 __mmask8 cmp_mask = 0;
4 __512i vec,Vskey = _mm512_set1_epi64(skey);

5 for(int i = 0; i < CAPACITY; i += 8) {
6 vec = _mm512_loadu_epi64((__512i*)(v->keys+i));
7 cmp_mask = _mm512_cmpge_epu64_mask(Vskey,vec);
8 count += _mm_popcnt_u32((uint32_t)cmp_mask);
9 }

10 return count;
11 }

Similarly, succ≥k(v) = |{x : x ∈ v.keys ∧ k > x}|
and the same code snippets can be used, by replacing
comparison >= by > and _mm512_cmpge_epu64_mask
by _mm512_cmpgt_epu64_mask. This approach (with
slightly different implementation) has also been suggested for
SIMD-based k-way search in [56], [58], [72].

The experiments of Figure 2 illustrate the efficiency of
data-parallel succ> compared to traditional implementations
of branching in multiway trees, on sorted arrays of 64-bit,
32-bit, and 16-bit unsigned integers. The arrays simulate key
arrays in a full BS-tree node, with values drawn randomly

3

from the corresponding uint domain. We performed random
successor (i.e., branching) operations to the array and mea-
sured the throughput (in millions operations per second) of
four implementations of succ>:
• Binary: use of (non-recursive) binary search
• Linear: scan from the beginning until successor is found
• Counting: count-based in a for-loop (Snippet 1)
• SIMD-based: count-based using SIMD (Snippet 2)

We tested various sizes of the array, modeling different key-
array sizes in a BS-tree node. We used array sizes that are
multiples of 8, which allows us to take full advantage of
SIMD-parallelism. Counting (Snippet 1) is autovectorized by
compilation flags -O3 and -march=native.

Binary search and linear scan perform similarly, with linear
search being superior on small arrays and binary search pre-
vailing on larger arrays, as expected. Counting search (Snippet
1) is much faster than binary/linear scan, due to the absence
of branch instructions and due to autovectorization optimiza-
tions at the assembly level, by the -O3 -march=native
compilation flag. Observe the excellent performance of SIMD-
based search (Snippet 2) for all array and key sizes. Compared
to black-box -O3 compilation, custom vectorization offers
significant advantages and achieves the theoretically optimal
performance. For example, for 64-bit keys and key-array
capacity 16, it achieves 7x performance improvement over
binary search, which is even higher than the theoretically
expected 4x (log16 16 vs. log2 16). For uint16 keys, Snippet
2 is more than 2x faster than autovectorized Snippet 1.

B. BS-tree search

Algorithms 3 and 4 show how the BS-tree is searched for
(i) equality queries and (ii) range queries. For equality, we
traverse the tree by applying a succ>k(v) operation at each
non-leaf node v. At the reached leaf v we apply a succ≥k(v)
operation to find the first position r in the leaf having a key
greater than or equal to k. If v.keys[r] equals k, then the
record at position r is returned; otherwise, k does not exist.
Equality search requires one succ> or succ≥ operation per
node along the search path. As an example, consider searching
for key 13 in the tree of Figure 1. A succ>13 operation on the
root will give position 0, as there are 0 keys smaller than or
equal to 13, so the first pointer of the root will be followed.
Then, the succ>13 operation on the visited node will return 1,
which means that we then visit the 2nd leaf, where succ≥13
is applied that returns 1, i.e., the position of 13 in the leaf.

For range queries, assume that we are looking for all keys
x, such that k1 ≤ x ≤ k2. We traverse the tree using succ>k1

operations to find the first leaf that may contain a query
result. In that leaf, we apply a succ≥k1 operation to locate
the position r1 of the first qualifying key. We repeat the same
search to find the position r2 of the first key greater than k2.
The results are the keys in positions from r1 to r2 (exclusive).

IV. GAPS AND UPDATES

The main novelty of BS-tree is the implementation of
gaps in nodes using duplicated dummy keys, which facilitates

ALGORITHM 3: Equality Search
Input : search key k, BS-tree root node v
Output : record-id corresponding to key k

1 while v is non leaf do
2 v ← node pointed by entry at position v[succ>k(v)]

3 r ← succ≥k(v) ▷ leaf node;
4 if v.keys[r] == k then
5 return record-id in v at positon r

6 else ▷ k does not exist
7 return NULL

ALGORITHM 4: Range Search
Input : search keys k1, k2, BS-tree root node v
Output : record-ids of keys x, where k1 ≤ x ≤ k2

1 n1, n2 ← v;
2 while n1 is non leaf do
3 n1 ← node pointed by entry at position

n1[succ>k1(n1)]

4 r1 ← succ≥k1(n1);
5 while n2 is non leaf do
6 n2 ← node pointed by entry at position

n2[succ>k2(n2)]

7 r2 ← succ>k2(n2);
8 return record-ids of keys from position r1 to position r2

efficient updates and allows the use of Snippet 2 for search at
the same time. Specifically, while SIMD-based k-way search
on packed arrays has also been suggested before [56], [58],
[72], to our knowledge it has never been applied on B+-tree
nodes with unused slots. As discussed in Sec. III, unused
key slots at the end of each node are filled with MAXKEY
values; hence, uniqueness is not a requirement for unused key
positions. In addition, BS-tree does not require the used key
slots to be continuous at the beginning of the node. This means
that ‘gaps’ with unused key slots are allowed in a node.

In BS-tree, we enforce that the key value in a gap (unused
slot) is the same as the first subsequent non-gap key. By
managing auxiliary information at each node, i.e., (i) the slot
use (number of used slots) and (ii) a bitmap indicating used
slots, we can efficiently track unused slots; see Figure 3 for
an example. In the rest of this section, we will show how
deletions and insertions are handled in the BS-tree. We will
explain how our approaches minimize the overhead of node
modifications while maintaining high search performance.

5 22 47 47 53 56 56 67 67 78 92 104 104 123 ∞ ∞Keys Array:

r5 r22 r47 r47 r53 r56 r56 r67 r67 r78 r92 r104 r104 r123 - -References:

Basic structure of leaf node m

Auxiliary information for leaf node m

Slot use: 10

Bitmap: 1 1 0 1 1 0 1 0 1 1 1 0 1 1 0 0

nextLeaf: m+1

Fig. 3: BS-tree leaf node structure

4

5 22 47 47 53 67 67 67 67 78 92 104 104 123 ∞ ∞Keys Array:

References:

After deletion of 56

Slot use: 9

Bitmap: 1 1 0 1 1 0 0 0 1 1 1 0 1 1 0 0

nextLeaf: m+1

r5 r22 r47 r47 r53 r67 r67 r67 r67 r78 r92 r104 r104 r123 - -

5 22 47 47 53 67 67 67 67 78 92 104 104 123 ∞ ∞Keys Array:

References:

After insertion of 52

Slot use: 10

Bitmap: 1 1 0 1 1 1 0 0 1 1 1 0 1 1 0 0

nextLeaf: m+1

5 22 47 47 52 53 67 67 67 78 92 104 104 123 ∞ ∞Keys Array:

References:

r5 r22 r47 r47 r53 r67 r67 r67 r67 r78 r92 r104 r104 r123 - -

r5 r22 r47 r47 r52 r53 r67 r67 r67 r78 r92 r104 r104 r123 - -

Fig. 4: Updates to BS-tree leaf node

A. Deletions

To delete a key, we first locate its position i in a leaf
node, using the equality search algorithm (discussed in Section
III-B). Then, we copy the key value from position i + 1
to position i and propagate it backwards to previous gap
positions in the node. If i is the last position in the leaf, we set
v.keys[i]=MAXKEY. One subtle point to note is that succ≥
may not give us the real position of the key k to be deleted
but may give us the first of a sequence of gaps that have key
value equal to k. For example, for deleting k = 56 in Figure 3,
we apply succ≥(56) which gives us position 5. Then, we find
the range of all positions having 56 (i.e., [5,6]) and copy into
them the next value (i.e., 67). Finding all the positions can be
done very fast using bitwise operations. Figure 4 (top) shows
the leaf node of Figure 3 after deleting key 56. Algorithm 5
is a pseudocode for deletions to the BS-tree.

As in previous work [53], [64], we do not take action for
nodes with fewer than 50% occupied slots, as we anticipate
insertions to be more frequent than deletions, so node merges
or key redistributions are not expected to pay-off. If the last
entry is deleted from a node, the node is marked as empty and
the corresponding separator entry at its parent is ‘deleted’ by
copying the next key into it.

B. Insertions

Inserting a new key k to the BS-tree entails searching for the
leaf node and the position in it to place it. Search is conducted
by applying succ>k operations starting from the root and
following the corresponding pointers. When we reach the leaf
v where in k should be inserted, we apply a succ≥k operation
which finds the proper slot in v to insert k. Then, we verify
whether the slot i returned by succ≥k is occupied by another
key. This is done by a simple test. If v.keys[i] = v.keys[i+1],
then we are sure that position i is free, so we place k there and
finish. For example, assume that we want to insert key 55 to
the leaf node of Figure 3. We apply a succ≥k operation to the

ALGORITHM 5: Deletion in BS-tree
Input : key k, BS -tree root node v

1 find leaf v and position r by running lines 1-3 of Alg 3
2 if v.keys[r] ̸= k then
3 return FAIL

4 bitmap← v.bitmap
5 if r == N − 1 then ▷ last key in node
6 bitmap← bitmap⊕ 0x0001
7 replicasOfKey ← tzcnt(bitmap)

8 for i← 0 to replicasOfKey − 1 do ▷ copy backwards
9 v.keys[r − i]←MAXKEY

10 else ▷ r is not the last position in the leaf
11 bitmap← bitmap⊕ (0x8000 ≪ r)
12 replicasOfKey ← lzcnt(bitmap)
13 nextV alidKey ← v.keys[r + replicasOfKey + 1]

14 for i← 0 to replicasOfKey do ▷ copy backwards
15 v.keys[r + i]← nextV alidKey

16 bitmap← bitmap⊕ (0x8000≫ (r + replicasOfKey))

17 v.slotuse← v.slotuse− 1
18 v.bitmap← bitmap
19 return SUCCESS

leaf, which will give us position 5. Since the next position (6)
has the same key, position 5 corresponds to a free slot (gap),
hence, we have directly put the inserted key 55 there. On
the other hand, if the key at position i is different compared
to the key at position i + 1, this means that the position is
occupied. In this case, we first find the first position j after
i, which is unused (i.e., a gap), and right-shift all keys (and
the corresponding record pointers) from position i to position
j−1, to make space, so that key k can be inserted at position i.
If there is no free position after i, then we move one position to
the left (left-shift) all keys and record ids from position i until
the first free position to the left of i. Figure 4 (bottom) shows
an example of inserting key 52. As the slot where 52 should
go is occupied by 53 and it is not a gap (the key following
53 is not equal to 53), we search for the next gap, which is
the position next to 53, right-shift 53 there and make room for
the new key 52. Algorithm 6 describes BS-tree insertion.

In case leaf v is full, then we conduct a split of v and
introduce a new leaf node. The existing keys in v together
with k are split in half and distributed between the two leaves.
Instead of placing the distributed keys to the first half of
each of the two leaves, we interleave each key with a gap
to facilitate fast insertion of future keys.

C. Tree building (bulk loading)

Like typical B+-tree bulk loading algorithms, we first sort
the keys to construct the leaf level of the index. To facilitate
fast future insertions, we do not pack the nodes with keys,
that is we leave free space to accomodate future insertions.
Specifically, if N is the capacity of a leaf node, we construct
all leaf nodes by adding to them the keys in sorted order; each
leaf node takes α · N (key, record-id) pairs, where α ranges
from 0.5 (half-full nodes) to 1 (full nodes). We set α = 0.75
by default to achieve a good tradeoff between the costs of

5

ALGORITHM 6: Insertion in BS-tree
Input : key k, BS -tree root node v

1 compute leaf v and position r by running lines 1-3 of Alg 3
2 if v.slotuse < N then
3 bitmap← ¬v.bitmap
4 if v.keys[r] == v.keys[r + 1] then ▷ slot r is empty
5 v.keys[r]← k
6 bitmap← bitmap⊕ (0x8000≫ r)

7 else
8 keysForShift← lzcnt(bitmap≪ r)
9 if keysForShift < N then ▷ empty to the right

10 shift right keysForShift keys of node v
11 v.keys[r]← k
12 bitmap← bitmap⊕ (0x8000≫

(r + keysForShift))

13 else ▷ empty slot to the left
14 keysForShift← tzcnt(bitmap≫ (N − r− 1))− 1
15 shift left keysForShift keys of node v
16 v.keys[r − 1]← k
17 bitmap← bitmap⊕ (0x8000≫

(r − (keysForShift + 1)))

18 v.slotuse← slotuse+ 1
19 v.bitmap← ¬bitmap

20 else
21 split leaf node v

22 return

queries and updates, after a sensitivity analysis (omitted from
the paper, for the interest of space). For each leaf, instead of
placing all keys at the beginning of the leaf and leaving (1−
α)N consecutive empty slots at the end of the node, we spread
the entries in the leaf by placing one gap (empty slot) after
every 1

1−a−1 entries.1 For each leaf node (except the first one)
a separator key, equal to the first key of the leaf, is added to
an array. For each separator key, a node pointer to the previous
leaf is associated to the separator. Finally, a node pointer to
the last leaf is introduced at the end of the array (without a
key value). After constructing the leaves, the (already sorted)
array of separator keys is used to construct the next level of
BS-tree (above the leaves), recursively. We increase α as we
go up, since we anticipate much fewer insertions (and node
overflows) at higher levels.

Complexity. Let f be the fanout of the BS-tree nodes and
assume that each node can be processed by a (small) con-
stant number of SIMD instructions (in our implementation,
at most 2 SIMD instructions are executed for each node
during searches and updates). Then, the BS-tree needs O(n)
space to accomodate n keys (as any B+-tree does) and the
computational cost of search and update operations in BS-
tree is O(logf n), because one path is traversed per search or
update operation (range queries access two paths) and each
node requires a constant number of SIMD instructions.

V. KEY COMPRESSION

BS-tree, as it has been discussed so far, stores the exact
keys in its nodes. Previous work on key compression for
B+-tree [14] uses fixed-size partial keys. One issue with

1Gaps between consecutive key values (for integer keys) are not introduced.

partial keys is the overhead of decompression which may
compromise performance. For BS-tree, we opt for the frame-
of-reference (FOR) compression approach, which has minimal
decompression overhead.

Specifically, for each node v, we store in the node’s auxiliary
information (see Figure 3) the first key v.k0 of the node and
replace the v’s key array (of size N) by an array where
each original key k is replaced by the difference k − k0.
This allows us to potentially double or quadruple the size
of the array if the differences occupy much less space than
the original keys. If N = 16 and the original array stores 64
bits, it may potentially be replaced by an array of N = 32
32-bit differences or N = 64 16-bit differences. Since the
keys in a node are ordered, we expect the differences to be
small, especially in leaf nodes, so the space savings due to the
reduction in the number of nodes are expected to be significant.
To achieve optimal performance of our data-parallel succ>
implementation, we set the key array size to 1024 bits, so N
can be 16, 32, or 64. As we have seen in Fig. 2, the cost
of our SIMD-based succ> (Snippet 2) on N = 64 uint16
keys is the same as that on N = 16 uint64 keys. This means
that, after compression, the height of the tree can decrease and
search can be accelerated.

Tree construction Our goal is to construct the tree in one
pass over the sorted keys and to result in leaf nodes having
75% occupancy (except when we are dealing with regions
of sequential key values), while achieving the best possible
compression. For this, we begin by checking whether the leaf
can be filled with 16-bit differences for the keys. If this is not
feasible, we reattempt the process by checking if half of the
keys can be stored as 32-bit differences. If this attempt also
fails, we conclude by storing the exact 64-bit keys.

Search To apply succ>k at a node v we first compute k′ =
k−v.k0, where v.k0 is the first key value of v, stored explicitly
in v’s meta-data (this is the only decompression overhead).
Then, we apply succ>k′ to the node to find the position of
the node pointer to follow. The same procedure is applied
at the leaf nodes for succ≥k; the position of k′ = k − v.k0
corresponds to the position of k, or if succ≥k′ returns NULL,
k does not exist.

Insert To insert a new key k, we first run the search algorithm
discussed above to find the leaf v and the position in v whereto
insert k and then store the difference k− v.k0 there. The new
nodes after a splitting a node v can be of the same type as
v, or they can be further compressed as they include fewer
entries than v with the first and the last one having smaller
differences.

Delete Deletion is not affected by key compression. When
the key to be deleted is found (represented exactly or by its
difference to k0) at the corresponding leaf node, we simply
copy into it the value of the next key, or MAXKEY if the
deleted key is the last one in the leaf node. In compressed
nodes, MAXKEY is the maximum value that can be repre-
sented using all available bits. If the first key of a node is

6

deleted, we do not change k0 (as it is not stored in a slot of
the array) and keep in the slots the differences to k0.

VI. IMPLEMENTATION DETAILS

This section presents some important tuning and implemen-
tation details of the BS-tree.

Node size and structure. As in previous work [13], [21], [38],
[42], [44], [56], [58], [64], [66], [67], [69], [71], we aim at
indexing large keys, each being a 64-bit unsigned integer. To
take full advantage of our SIMD succ> implementation, each
node stores a maximum of N = 16 entries; based on this,
we allocate 16 × 64 = 1024 bits for the keys of each node.
Hence, the keys of each node (internal or leaf) fill two cache
lines (each cache line can store 64 bytes). This means that for
succ>, we perform 2 SIMD instructions per node by loading
the keys at 2 registers of 512 bits (8 keys at each register).
1024 bits are also allocated for keys in the compressed CBS-
tree nodes; a compressed key array may have 32 32-bit or
64 16-bit entries. This decision is based on the experiment
of Figure 2, which indicates that 1024 bits achieves the best
speedup of Snippet 2 over alternative tree branching methods.

Memory management. To store the BS-tree in memory, we
utilize two main structures: one to store the inner nodes and
another for the leaf nodes. Each inner node consists of two
arrays with 16 entries. The first array holds 64-bit keys, while
the second contains 32-bit references to nodes. 32 bits are
sufficient for the references because they are in fact offsets
to fixed-length slots in memory arrays allocated for nodes
(one for inner nodes and one for leaf nodes).2 The auxiliary
data for each node are put in a separate dedicated array
aligned with the node arrays. Hence, each inner node has a
size of 192 bytes, which fits into 3 cache lines. Our tested
BS-tree implementation only has keys and no record-ids in
its leaves, so a leaf node contains a single array of 16 64-
bit keys, with each leaf node occupying 128 bytes, fitting
into 2 cache lines. The inner and leaf nodes are stored in a
contiguous array, aligned to Transparent Huge Pages (2 MB)
for efficiency. Alignment plays a crucial role in optimizing
both cache efficiency and the use of SIMD operations, making
it a key factor in the performance of BS-tree. By aligning data
to cache lines, we minimize cache misses and ensure that the
CPU can retrieve entire nodes in a single memory access,
significantly speeding up operations. By aligning nodes to
huge pages (2 MB), we reduce translation lookaside buffer
(TLB) misses. We also make use of builtin prefetch, a
compiler intrinsic that allows us to pre-load data into the cache
before it is needed, reducing latency. By combining cache-line
and SIMD-friendly alignment, along with appropriate use of

builtin prefetch, BS-tree allows for SIMD acceleration, and
reduces memory access latency, leading to significantly better
overall performance.

Compress or not? The compressed version of BS-tree with
variable-capacity nodes (Section V) may reduce the memory

2If we had to use 64-bit references, the search performance of the BS -tree
only drops by up to 5%, according to our tests.

footprint of the index and improve its performance, but also
comes with the overhead of explicitly keeping the first key
of a node, which does not pay off for nodes having 64-bit
differences that cannot be compressed.3 Hence, we employ
a decision mechanism for choosing between the construction
of a BS-tree or a compressed BS-tree, based on the input
data. The first key is stored in the auxiliary structure. Before
bulk-loading the tree, we virtually split the sorted keys input
into segments of 13 keys each, subtract the smallest key from
the largest key in each bucket, and calculate the number
of leading zeros. After performing these calculations for all
segments, we take the average number of leading zeros. If
this average is greater or equal to 32 bits, we conclude that
the dataset can benefit from a compact BS-tree compression,
and we go ahead with its construction. Otherwise, we create
a standard (uncompressed) BS-tree. The selection of 13 keys
is not arbitrary, as we put 25% gaps at each leaf, and the
13th key serves as the separator for the node. We found out
that compression is not effective for inner nodes, so our final
compressed BS-tree implementation has uncompressed inner
nodes and compressed leaves.

VII. CONCURRENCY CONTROL

A number of concurrency control techniques has been
proposed for the B+-tree and other indices, including lock
coupling [12], [27], right-sibling pointers [39], fine-grained
locking with lock coupling and logical removals [17], Bw-
tree’s lock-free mechanism [44], [61] and Read-Optimized
Write Exclusion (ROWEX) [43]. For B-trees, Leis et al. [41],
[43] proposed an Optimistic Lock Coupling (OLC) technique,
which is easy to implement and highly efficient. In OLC, when
a thread wants to read or modify a node, it first acquires an
optimistic read lock, allowing it to traverse the tree while
maintaining a local copy of the node’s state. If the thread
intends to perform an update, it checks whether the node has
been modified by another thread since it was read. If not, it
commits the changes atomically. In the event of a conflict (i.e.,
if another thread has modified the node), the thread rolls back
its changes and retries the operation from the root.

Our current implementation of BS-tree employs the OLC
mechanism [41], [43], because it preserves the original tree
structure, adding only a lightweight version counter per node
to ensure atomicity and isolation. We introduced a slight
modification to OLC in how node splits are handled. In the
original OLC, when a thread takes on a write task, it splits
the first full node (inner or leaf) it encounters during traversal.
After completing the split, the thread restarts its traversal
until it finds a path where every node has at least one empty
slot. This efficiently reorganizes node contents, ensuring that
insertions triggering splits at multiple tree levels are managed
without requiring a global lock. For example, when a split
occurs at a leaf node, the restart process is only necessary if
its parent node has no free slot to fit the separator of the two

3As we want all leaf nodes to have the same fixed size (for alignment
purposes), we do not allow the same BS -tree to have both uncompressed and
compressed leaves.

7

new leaves. On the other hand, if the parent node has a free
slot, restarting the process is not necessary.

VIII. EXPERIMENTS

We experimentally compare BS-tree to alternative main-
memory indices (learned and non-learned). As in previous
work [13], [42], [62], we have built and compared indices
for key data only; record ids or values are not stored or
accessed in any competitor index, but the objective of each
index is to locate the position(s) of the searched key(s). The
implementation of all methods is in C++ and compiled with
gcc (v13) using the flags -O3 and -march=native. The
experiments were conducted on a system with an 11th Gen
Intel® Core™ i7-11700K processor with 8 cores (at 3.60
GHz), 128 GB of RAM, having AVX 512 support. The
operating system used was Ubuntu 22.04. We extended the
codebase of GRE [62] to include BS-tree.

A. Setup

Datasets. We ran our tests on standard benchmarking real
datasets of varying sparsity, used in previous work [34], [49],
[62]; each one consists of unsigned 64-bit integer keys. In
Amazon BOOKS [34], [49], each key represents the popularity
of a specific book. In FB [34], [49], [55], each key is a
Facebook user-id. OSM [34], [49] contains unique integer-
encoded locations from OpenStreetMap. GENOME [54], [62]
includes loci pairs from human chromosomes. PLANET [2],
[62], a planet-wide collection of integer-encoded geographic
locations compiled by OpenStreetMap. According to [62],
[71], OSM, FB, GENOME, and PLANET are complex real-
world datasets that can pose challenges for learned indices.
In contrast, the key distribution of BOOKS is easy to learn.
We did not conduct experiments using synthetic datasets with
common distributions, as, according to [49], it would be trivial
for a learned index to model such distributions. Although we
do not include experiments with non-integer keys, BS-tree can
be used for floats, by changing the SIMD intrinsics in Snippet
2, and for strings, after being dictionary encoded (see [22]).

Competitors. We compare our proposed BS-tree and its
compressed version, denoted by CBS-tree, with five updatable
learned and non-learned indices, for which the code was
publicly available. We did not compare to methods found
inferior in previous comparative studies [13], [62] and to those
with proprietary or unavailable code (e.g., [38], [71]).

Non-learned Indices. STX library [1] is a fully optimized
C++ implementation of a main-memory B+-tree. We use the
set-based implementation from STX, which does not store
values in the leaf nodes. For its construction, we used its fast
bulk-loading method. We used the default block size of STX
(256 bytes), so each leaf node holds 32 keys (32 × 8 = 256
bytes). We used two versions of the STX tree: the first is
the original code, referred to as B+-tree, while the second
version creates 25% empty space at the end of each leaf node,
denoted by Sparse B+-tree (for fairness, as our BS-tree also
proactively introduces 25% of gaps in leaves).

TABLE I: Construction time (for 150 million keys)
Construction Time (sec)

Indices / Datasets BOOKS OSM FB GENOME PLANET
BS -tree 0.33 0.33 0.33 0.33 0.33

CBS -tree 0.35 0.32 0.18 0.20 0.18
B+-tree 0.39 0.39 0.39 0.39 0.39

Sparse B+-tree 0.50 0.50 0.50 0.50 0.50
HOT 15.61 16.65 16.56 16.23 15.33
ART 5.65 6.11 6.62 6.42 6.19

ALEX 25.43 41.60 45.46 30.74 30.06
LIPP 9.58 9.31 6.98 7.01 7.05

We also compare to SIMD-based implementations of HOT
[3], [13] and ART [7], [42]. These tries do not support bulk-
loading. However, we found that pre-sorting the data improves
the construction time for both and results in more efficient
structures. The HOT code release does not support range
queries, so we implemented them ourselves. HOT cannot
handle keys greater than 263 − 1, so we removed values
exceeding this limit from certain datasets.

Learned Indices. ALEX [5], [21] and LIPP [6], [64] are the
state-of-the-art updatable learned indices for key-value pairs
[62]. To use them, for each dataset we used as value of each
key the key itself. ALEX and LIPP both support bulk-loading.
Neither uses SIMD intrinsics during search. The reason is their
large leaves (in the order of KB), where SIMD-based search
is not effective (see Fig. 2). ALEX uses exponential search in
leaves, while LIPP eliminates the last-mile search by ensuring
that predicted positions are exact for each key in the index.

Note that all BS-tree competitors do not utilize huge pages.
In their implementations, each node occupies a random loca-
tion in memory and connects to its child nodes via pointers.
This design results in the retrieval of a significantly larger
number of memory pages into the TLB cache, thereby dimin-
ishing the potential advantage of using huge pages.

Workloads. We set up different workloads to measure perfor-
mance. First, we randomly selected 150 million entries from
each dataset and bulk-loaded them to an index (HOT and ART
do not support bulk-loading, however, they both benefit from
sorting). For our workloads, we used 50 million keys, that
are selected randomly (i.e., queries and updates hit a random
region of the space). Our workloads are:

• Workload A (Read-Only): 100% equality searches.
• Workload B (Write-Only): 100% writes (insertions).
• Workload C (Read-W): 50% reads, 50% writes.
• Workload D (Range-W): 95% range searches, 5% writes.
• Workload E (Mixed): 60%/35%/5% reads/writes/deletes.
• Workload F (Update-Intens.): 50% writes, 50% deletes.

B. Construction Cost and Memory Footprint

Table I presents the construction times of all tested methods,
while Table II shows their memory footprints, for 150M keys.
We exclude sorting from the construction cost. BS-tree con-
struction time also includes the decision-making mechanism
(roughly takes 0.03 sec) on whether we will construct a BS-
tree or a CBS-tree (see Section VI). To calculate the memory

8

TABLE II: Memory footprint (for 150 million keys)
Memory Footprint (GB)

Indices / Datasets BOOKS OSM FB GENOME PLANET
BS -tree 1.84 1.84 1.84 1.84 1.84

CBS -tree 2.03 1.75 0.55 0.80 0.51
B+-tree 1.41 1.41 1.41 1.41 1.41

Sparse B+-tree 1.88 1.88 1.88 1.88 1.88
HOT 1.78 1.79 1.83 1.92 1.71
ART 3.86 4.12 3.88 3.78 3.66

ALEX 2.73 2.77 2.77 2.73 2.73
LIPP 13.51 14.69 10.89 11.66 11.62

usage of each method, we utilize the C function getrusage4.
Since all learned indices essentially store 64-bit values together
with the keys, we report half of their measured memory
requirements, to approximate the memory required just for
the keys and their inner structure.

As expected, non-learned indices (except from the CBS-
tree) have a stable construction time and memory footprint.
On the other hand, learned indices involve model training and
take longer to build. The Sparse B+-tree is larger than B+-tree,
so it is costlier to build and has a larger memory footprint.

CBS-tree has the smallest memory footprint than all meth-
ods for FB, GENOME, and PLANET because of its high
compression effectiveness, which also has a positive impact to
the construction time. On the other hand, CBS-tree occupies
more space than BS-tree on BOOKS because the distribution
of keys there does not provide many compression opportuni-
ties. Note that for BOOKS and OSM, our decision mechanism
(see Section VI) chooses to construct a BS-tree while for FB,
GENOME, and PLANET it decides to construct a CBS-tree.

HOT is very expensive to build compared to BS-tree and
B+-tree, because HOT requires keys to be inserted one at a
time, lacking a bulk-loading mechanism. HOT uses slightly
less memory than BS-tree; however, our CBS-tree has a
significantly smaller memory footprint than HOT in three out
of the five datasets. ART is faster to build compared to HOT
(but occupies more space), due to its simpler insertion process.

In conclusion, the BS-tree has low construction cost, with
the B+-tree exhibiting comparable performance alongside
a very small memory footprint. Additionally, the CBS-tree
achieves the fastest construction time and consumes from 56%
to 94% less memory than all methods in FB, GENOME, and
PLANET. Our results align with the findings of Wongkham
et al. [62], which conclude that memory efficiency is not a
distinct advantage of updatable learned indices.

C. Single-Threaded Throughput

Next, we evaluate the throughput of all methods (single-
threaded) on the five workloads described in Section VIII-A.
Figure 5 presents the throughput (millions of operations per
second) of all methods for Workload A (read-only). BS-tree
and CBS-tree outperform all competitors across the board ex-
cept for BOOKS, where ALEX is marginally faster than CBS-
tree and has the same throughput as BS-tree. The excellent
performance of ALEX on BOOKS is due to the smooth key

4https://man7.org/linux/man-pages/man2/getrusage.2.html

distribution there, which is easy for ALEX to learn. On aver-
age, our methods have a significant performance gap compared
to the nearest competitor. Specifically, BS-tree is roughly 2.5x
faster than HOT on OSM, 1.5x faster than LIPP on FB and
GENOME and 2.2x faster than ART on FB and GENOME.
CBS-tree is about 7% slower than ALEX on BOOKS, but
much faster than previous work on all other datasets and even
faster than BS-tree on FB, GENOME, and PLANET, while
having a much smaller memory footprint. CBS-tree exploits
the highly compressible keys of FB, GENOME, and PLANET
to drastically reduce the capacity of leaf nodes and the overall
space required for the index. This increases the likelihood that
multiple searches hit the same leaves, exploiting the memory
cache, as we will also show in the next set of experiments.

For Workload B (write-only), as Figure 6 shows, BS-tree
outperforms all methods, while CBS-tree loses to ALEX only
on BOOKS. ART achieves relatively good performance in this
workload because of its lazy expansion and path compression.
LIPP is more robust than ALEX due to its accurate prediction
mechanism, which reduces the need for frequent node splits
or rebalancing due to the more appropriate placement of keys
during its construction. Observe that the Sparse B+-tree is
faster than the B+-tree because it requires much fewer splits.
CBS-tree has competitive write performance to BS-tree.

On Workload C (Figure 7), the performance of all methods
stands between that of Workload A (read-only) and Workload
B (write-only), which is expected. For the results of Workload
D (range-write), see Figure 8. The results are similar compared
to Workload A (read-only) since Workload D is read-heavy.
Range queries retrieve 153 keys on average. LIPP performs
much worse than ALEX, as LIPP’s structure is not optimized
for range queries. On the other hand, ALEX has large nodes
and facilitates jumps to sibling nodes. HOT and ART are
not optimized for range queries, so they performs poorly. On
the compressible datasets (FB, GENOME, PLANET), CBS-
tree outperforms BS-tree as its compressed leaves have larger
capacities and fewer leaves need to be scanned per query.
Figure 9 shows the results using Workload E (read-write-
delete). The results are similar to those for Workloads A and
B. BS-tree and CBS-tree outperform all competitors across
all datasets except for BOOKS, where CBS-tree is slightly
inferior to ALEX. Deletions do not impose an overhead to all
methods. Finally, Figure 10 shows performance on the update-
heavy workload F with a mix of writes and deletions. The
relative performance of the methods is the similar as for other
workloads that include many writes (e.g., Workloads B and C).
Once again, ALEX is favored by the easy-to-learn distribution
of BOOKS, but it does not perform well on other datasets.

D. Performance Counters

Besides throughput, we also compared all methods with
respect to various performance counters, including instructions
executed, cycles, mispredicted branches, and misses in L1 and
TLB (Translation Lookaside Buffer) misses. As representative

9

0

2

4

6

8

10

12

T
h
ro

u
g
h
p

u
t

(M
o
p

/s
)

Indices
0

2

4

6

8

10

12

14

T
h
ro

u
g
h
p

u
t

(M
o
p

/s
)

Indices
0

2

4

6

8

10

T
h
ro

u
g
h
p

u
t

(M
o
p

/s
)

Indices
0

2

4

6

8

10

T
h
ro

u
g
h
p

u
t

(M
o
p

/s
)

Indices
0

2

4

6

8

10

12

T
h
ro

u
g
h
p

u
t

(M
o
p

/s
)

Indices

LIPP
BOOKS

Bs-tree B+-tree Sparse B+-tree HOT ART ALEX
OSM FB GENOME PLANET

CBs-tree

Fig. 5: Workload A: Read Only (100%), single-threaded throughput

0

1

2

3

4

5

6

T
h
ro

u
g
h
p

u
t

(M
o
p

/s
)

Indices
0

1

2

3

4

5

6

T
h
ro

u
g
h
p

u
t

(M
o
p

/s
)

Indices
0

1

2

3

4

5

6

T
h
ro

u
g
h
p

u
t

(M
o
p

/s
)

Indices
0

1

2

3

4

5

6

T
h
ro

u
g
h
p

u
t

(M
o
p

/s
)

Indices
0

1

2

3

4

5

6

T
h
ro

u
g
h
p

u
t

(M
o
p

/s
)

Indices

LIPP
BOOKS

Bs-tree B+-tree Sparse B+-tree HOT ART ALEX
OSM FB GENOME PLANET

CBs-tree

Fig. 6: Workload B: Write Only (100%), single-threaded throughput

0

1

2

3

4

5

6

T
h
ro

u
g
h
p

u
t

(M
o
p

/s
)

Indices
0

1

2

3

4

5

6

7

T
h
ro

u
g
h
p

u
t

(M
o
p

/s
)

Indices
0

1

2

3

4

5

6

T
h
ro

u
g
h
p

u
t

(M
o
p

/s
)

Indices
0

1

2

3

4

5

6

T
h
ro

u
g
h
p

u
t

(M
o
p

/s
)

Indices
0

1

2

3

4

5

6

T
h
ro

u
g
h
p

u
t

(M
o
p

/s
)

Indices

BOOKS OSM FB GENOME PLANET

LIPPBs-tree B+-tree Sparse B+-tree HOT ART ALEXCBs-tree

Fig. 7: Workload C: Read (50%) - Write (50%), single-threaded throughput

LIPP

0

0.5

1

1.5

2

2.5

3

T
h
ro

u
g
h
p

u
t

(M
o
p

/s
)

Indices
0

0.5

1

1.5

2

2.5

3

3.5

T
h
ro

u
g
h
p

u
t

(M
o
p

/s
)

Indices
0

0.5

1

1.5

2

2.5

3

T
h
ro

u
g
h
p

u
t

(M
o
p

/s
)

Indices
0

0.5

1

1.5

2

2.5

3

3.5

T
h
ro

u
g
h
p

u
t

(M
o
p

/s
)

Indices
0

0.5

1

1.5

2

2.5

3

T
h
ro

u
g
h
p

u
t

(M
o
p

/s
)

Indices

BOOKS

Bs-tree B+-tree Sparse B+-tree HOT ART ALEX
OSM FB GENOME PLANET

CBs-tree

Fig. 8: Workload D: Range (95%) - Write (5%), single-threaded throughput

datasets, we selected BOOKS and FB.5 We chose to measure
Workload C (reads - writes), as it is update-heavy and the
unpredictable nature of writes can lead to numerous splits,
stressing the indices. To calculate these metrics, we utilized
Leis’s perf event code [4]. The average performance measures
per operation for all methods are presented in Table III and
Table IV for BOOKS and FB, respectively.

BS-tree needs the smallest number of instructions and cycles
on BOOKS, with CBS-tree being a close runner up. For FB,
CBS-tree needs less cycles, which explains its superiority to
BS-tree. Our methods are simple and efficient, benefiting from
the use of SIMD instructions and alignment, which reduce
the number of cycles and instructions required for each task.
They have the fewest mispredicted branches, which is expected
due to their branchless search; mispredicted branches in BS-
tree arise from the insertions. Regarding L1, on average, our
algorithms incur 16 cache misses, which is consistent with
our expectation. Specifically, the height of our trees is 6 and

5Recall that ALEX presents competitive behavior on BOOKS, whereas on
FB BS -tree and CBS -tree have a large performance gap to other methods.

their fanout is 16; we encounter 2 cache misses per tree
level and 2 cache misses at the leaf level (2 × 6 + 2 = 14
misses), with the remaining 2 misses caused by insertions.
For BOOKS, ART achieves the best performance in terms
of L1 cache misses, though our algorithms are close in
comparison. Lastly, in terms of TLB misses, our algorithms
exhibit outstanding performance relative to our competitors.
This can be attributed to our use of huge pages (see Sec. VI).
Overall, the performance counters show that our BS-tree and
CBS-tree are fully optimized and cache-efficient via the use
of SIMD instructions, huge pages, and branchless code.

E. Multi-Threaded Workloads

Next, we present multi-threaded experiments, where work-
loads are executed by multiple threads simultaneously. For
concurrency control, our BS-tree and CBS-tree use OLC as
described in Section VII, ART and B+-tree use OLC, HOT
uses ROWEX, and ALEX and LIPP use optimistic locking.
We applied Workload A, Workload B, and Workload C,
which are the most representative ones. Figure 11, presents

10

0

1

2

3

4

5

6

7

T
h
ro

u
g
h
p

u
t

(M
o
p

/s
)

Indices
0

1

2

3

4

5

6

7

T
h
ro

u
g
h
p

u
t

(M
o
p

/s
)

Indices
0

1

2

3

4

5

6

7

T
h
ro

u
g
h
p

u
t

(M
o
p

/s
)

Indices
0

1

2

3

4

5

6

7

8

T
h
ro

u
g
h
p

u
t

(M
o
p

/s
)

Indices
0

1

2

3

4

5

6

7

T
h
ro

u
g
h
p

u
t

(M
o
p

/s
)

Indices

BOOKS OSM FB GENOME PLANET

LIPPBs-tree B+-tree Sparse B+-tree HOT ART ALEXCBs-tree

Fig. 9: Workload E: Read (60%) - Write (35%) - Deletions (5%), single-threaded throughput

0

1

2

3

4

5

T
h
ro

u
g
h
p

u
t

(M
o
p

/s
)

Indices
0

1

2

3

4

5

6

T
h
ro

u
g
h
p

u
t

(M
o
p

/s
)

Indices
0

1

2

3

4

5

6

T
h
ro

u
g
h
p

u
t

(M
o
p

/s
)

Indices
0

1

2

3

4

5

6

T
h
ro

u
g
h
p

u
t

(M
o
p

/s
)

Indices
0

1

2

3

4

5

T
h
ro

u
g
h
p

u
t

(M
o
p

/s
)

Indices

BOOKS OSM FB GENOME PLANET

LIPPBs-tree B+-tree Sparse B+-tree HOT ART ALEXCBs-tree

Fig. 10: Workload F: Write (50%) - Deletions (50%), single-threaded throughput

0

8

16

24

32

40

48

2 4 6 8

T
h
ro

u
g
h
p

u
t

(M
o
p

/s
)

of cores

Bs-treeOLC CBs-treeOLC B+-treeOLC HOT-ROWEX ART-OLC ALEX+ LIPP+

0

8

16

24

32

40

48

2 4 6 8

T
h
ro

u
g
h
p

u
t

(M
o
p

/s
)

of cores

0

10

20

30

40

50

60

70

2 4 6 8

T
h
ro

u
g
h
p

u
t

(M
o
p

/s
)

of cores

0

5

10

15

20

25

30

35

2 4 6 8

T
h
ro

u
g
h
p

u
t

(M
o
p

/s
)

of cores

0

5

10

15

20

25

30

35

2 4 6 8

T
h
ro

u
g
h
p

u
t

(M
o
p

/s
)

of cores

BOOKS OSM FB GENOME PLANET

Fig. 11: Workload A: Read Only (100%), multi-threaded throughput

0

3

6

9

12

15

18

2 4 6 8

T
h
ro

u
g
h
p

u
t

(M
o
p

/s
)

of cores

0

3

6

9

12

15

18

2 4 6 8

T
h
ro

u
g
h
p

u
t

(M
o
p

/s
)

of cores

0

3

6

9

12

15

18

2 4 6 8

T
h
ro

u
g
h
p

u
t

(M
o
p

/s
)

of cores

0

2

4

6

8

10

12

2 4 6 8

T
h
ro

u
g
h
p

u
t

(M
o
p

/s
)

of cores

0

2

4

6

8

10

12

14

2 4 6 8

T
h
ro

u
g
h
p

u
t

(M
o
p

/s
)

of cores

Bs-treeOLC CBs-treeOLC B+-treeOLC HOT-ROWEX ART-OLC ALEX+ LIPP+
BOOKS OSM FB GENOME PLANET

Fig. 12: Workload B: Write Only (100%), multi-threaded throughput

TABLE III: Performance counters for BOOKS, Workload C
Workload C - Dataset: BOOKS

Indices / Events Instr. Cycles Misp. Branches L1 Misses TLB Misses
BS -tree 220.18 884.16 1.03 16.41 0.61

CBS -tree 277.87 997.57 1.03 16.33 0.05
B+-tree 656.84 2806.93 11.49 33.49 4.44

Sparse B+-tree 565.33 2408.02 10.61 28.29 3.84
HOT 898.99 2585.71 3.44 31.78 4.75
ART 435.56 1443.29 2.12 14.12 3.06

ALEX 612.57 1165.58 5.23 21.03 2.22
LIPP 300.47 1379.23 1.95 18.66 5.02

TABLE IV: Performance counters for FB, Workload C
Workload C - Dataset: FB

Indices / Events Instr. Cycles Misp. Branches L1 Misses TLB Misses
BS -tree 220.51 877.78 1.03 16.43 0.59

CBS -tree 269.33 784.75 1.09 14.29 0.00
B+-tree 655.42 2807.87 11.54 33.45 4.41

Sparse B+-tree 566.01 2395.46 10.62 28.37 3.85
HOT 962.58 2816.29 4.08 33.47 5.06
ART 603.69 1804.94 2.33 14.47 3.49

ALEX 1049.11 2634.38 6.97 40.31 4.72
LIPP 276.74 1350.58 1.49 18.62 5.11

the throughput (millions of operations per second) of all
methods for Workload A (read-only). Observe that the access

methods have the same relative performance as in single-
threaded processing. Our trees outperform all competitors,
with ALEX being competitive only on BOOKS. For the
write-only Workload B (Figure 12), ART achieves the best
performance, while our trees are competitive in some cases.
ART’s strong performance is largely due to OLC, which is
well-suited to its structure. For the mixed read-write Workload
C (Figure 13), either BS-tree or CBS-tree outperforms all
competitors across all datasets. All methods scale well with
the number of cores.

F. Scalability Tests

We also evaluated the performance of all tested methods
for different data and workload scales. Specifically, we used
the BOOKS dataset with 150, 300, 450, and 600 million keys
under a 50%-50% read–write workload (Workload C), with
50 million operations. As Figure 14(a) shows, BS-tree and
CBS-tree consistently achieve the best performance as the
dataset size increases. We observe a small decrease in the
throughput of all indices with the number of initial keys, which

11

0

3

6

9

12

15

18

2 4 6 8

T
h
ro

u
g
h
p

u
t

(M
o
p

/s
)

of cores

0

3

6

9

12

15

18

2 4 6 8

T
h
ro

u
g
h
p

u
t

(M
o
p

/s
)

of cores

0

3

6

9

12

15

18

2 4 6 8

T
h
ro

u
g
h
p

u
t

(M
o
p

/s
)

of cores

0

3

6

9

12

15

18

2 4 6 8

T
h
ro

u
g
h
p

u
t

(M
o
p

/s
)

of cores

0

3

6

9

12

15

18

2 4 6 8

T
h
ro

u
g
h
p

u
t

(M
o
p

/s
)

of cores

Bs-treeOLC CBs-treeOLC B+-treeOLC HOT-ROWEX ART-OLC ALEX+ LIPP+
BOOKS OSM FB GENOME PLANET

Fig. 13: Workload C: Read (50%) - Write (50%), multi-threaded throughput

is expected. Figure 14(b) shows how the average throughput
is affected if the number of operations on indices, with 450M
keys initially, grows from 50M to 200M (Workload C on
BOOKS). Note that the relative performance of all methods
is not affected by the scale of the workload.

LIPP
Bs-tree B+-tree Sparse B+-tree
HOT ART ALEX

CBs-tree

0

2

4

6

150M 300M 450M 600MTh
ro

ug
hp

ut
 (M

op
/s)

of base keys

50M workload keys

(a) Data scalability

0

2

4

6

50M 100M 150M 200MTh
ro

ug
hp

ut
 (M

op
/s)

of operations in workload

450M base keys

(b) Workload scalability

Fig. 14: Scalability experiments (BOOKS, Workload C)

G. Impact of BS-tree design

In the final set of experiments, we assess the impact of
the design choices in BS-tree. Specifically, we analyze the
effectiveness of the BS-tree features, with the most powerful
ones being SIMD-based branching (Snippet 2) and transparent
huge pages. We implemented four versions of our structure:
one auto-vectorized version without huge pages (NHP +
Counting), one with only huge pages enabled (HP + Counting),
another using only our Snippet 2 (NHP + SIMD), and finally,
a fully optimized version that combines both huge pages
and AVX instructions (HP + SIMD). Figure 15 shows the
throughput of the four versions of BS-tree for Workload A
(reads). We observe that both optimizations (HP and SIMD)
boost BS-tree. Additionally, we find that even the basic version
of BS-tree (NHP + Counting) remains competitive with all
other methods shown in Figure 15. Huge pages do not improve
the performance of CBS-tree as much as they do for BS-tree.
For datasets that can be compressed, CBS-tree produces larger
leaf nodes (storing up to 64 keys of 16 bits), which increases
the likelihood that the corresponding leaf node is already in
the cache. On the other hand, for datasets that cannot be
compressed, there is an overhead for decoding the node type
(16 keys of 64 bits, 32 keys of 32 bits, or 64 keys of 16 bits).
H. Summary of Experimental Findings

In summary, BS-tree and CBS-tree exhibit excellent and ro-
bust performance for different workloads and different datasets
of varying distribution, being superior than all competitors in
most cases, in single- and multi-threaded processing. They
also have the lowest construction cost and memory footprint.

NHP + Counting
HP + Counting

NHP + SIMD
HP + SIMD

0
2
4
6
8

10
12

BOOKS OSM FB GENOME PLANETTh
ro

ug
hp

ut
 (M

op
/s)

Dataset

(a) BS-tree

0
2
4
6
8

10
12
14

BOOKS OSM FB GENOME PLANETTh
ro

ug
hp

ut
 (M

op
/s)

Dataset

(b) CBS-tree

Fig. 15: Effect of implementation design under Workload A

Note that our decision mechanism, which imposes a small
overhead in the construction (up to 10% of the construction
cost) decides automatically and correctly which of BS-tree
or CBS-tree to build for a given dataset. BS-tree outperforms
trie-based indices like HOT and ART, except for multithreaded
write-heavy workloads, where ART is superior. Still, we have
not implemented yet BS-tree for string keys, where trie-based
structures are known to perform best. Regarding updatable
learned indices, our study shows that they are typically out-
performed by optimized non-learned indices like our BS-tree.

IX. CONCLUSIONS

We proposed BS-tree, a main-memory B+-tree with a data-
parallel implementation for branching at each level during
search and updates. BS-tree is based on a novel representation
of gaps in nodes by duplicating existing keys, which does
not affect SIMD-based branchless search in nodes. BS-tree
uses FOR compression for nodes that include keys with
small differences. Our experimental evaluation demonstrates
the superiority of BS-tree compared to open-source state-of-
the-art non-learned and learned indices, with respect to con-
struction time, memory footprint, and throughput for various
workloads that include queries and updates in single- and
multi-threaded processing. Inspired by [58], in the future, we
plan to implement BS-tree in a hybrid setup, where the top
(and infrequently updated levels) are handled by the GPU that
allows much higher data parallelism and the lower (frequently
updated) levels are handled by the CPU. In addition, we will
study the support of string keys in BS-tree (one solution is to
use Binary, ASCII or Base64 encoding [21]).

ACKNOWLEDGEMENTS

Work supported by project MIS 5154714 of the National
Recovery and Resilience Plan Greece 2.0 funded by the
European Union under the NextGenerationEU Program.

12

REFERENCES

[1] Stx b+tree code, 2013. https://github.com/bingmann/stx-btree/tree/
master.

[2] Google cloud. openstreetmap., 2017. https://console.cloud.google.
com/marketplace/details/openstreetmap/geo-openstreetmap?project=
practice-bigtable.

[3] Hot code, 2018. https://github.com/speedskater/hot.
[4] Perfevent code, 2018. https://github.com/viktorleis/perfevent?tab=

readme-ov-file.
[5] Alex code, 2020. https://github.com/microsoft/ALEX.
[6] Lipp code, 2021. https://github.com/Jiacheng-WU/lipp.
[7] Art code, 2022. https://github.com/pohchaichon/ARTSynchronized/tree/

808372ded6b8c5a6d3a1741090510b79042f2aa7.
[8] D. Agrawal, D. Ganesan, R. K. Sitaraman, Y. Diao, and S. Singh. Lazy-

adaptive tree: An optimized index structure for flash devices. Proc.
VLDB Endow., 2(1):361–372, 2009.

[9] N. Askitis and R. Sinha. Hat-trie: A cache-conscious trie-based data
structure for strings. In G. Dobbie, editor, Computer Science 2007.
Proceedings of the Thirtieth Australasian Computer Science Conference
(ACSC2007). Ballarat, Victoria, Australia, January 30 - February 2,
2007. Proceedings, volume 62 of CRPIT, pages 97–105. Australian
Computer Society, 2007.

[10] N. Askitis and R. Sinha. Engineering scalable, cache and space efficient
tries for strings. VLDB J., 19(5):633–660, 2010.

[11] M. Athanassoulis and A. Ailamaki. Bf-tree: Approximate tree indexing.
Proc. VLDB Endow., 7(14):1881–1892, 2014.

[12] R. Bayer and M. Schkolnick. Concurrency of operations on b-trees.
Acta Informatica, 9:1–21, 1977.

[13] R. Binna, E. Zangerle, M. Pichl, G. Specht, and V. Leis. HOT: A height
optimized trie index for main-memory database systems. In G. Das,
C. M. Jermaine, and P. A. Bernstein, editors, Proceedings of the 2018
International Conference on Management of Data, SIGMOD Conference
2018, Houston, TX, USA, June 10-15, 2018, pages 521–534. ACM, 2018.

[14] P. Bohannon, P. McIlroy, and R. Rastogi. Main-memory index structures
with fixed-size partial keys. In S. Mehrotra and T. K. Sellis, editors,
Proceedings of the 2001 ACM SIGMOD international conference on
Management of data, Santa Barbara, CA, USA, May 21-24, 2001, pages
163–174. ACM, 2001.

[15] M. Böhm, B. Schlegel, P. B. Volk, U. Fischer, D. Habich, and W. Lehner.
Efficient in-memory indexing with generalized prefix trees. In T. Härder,
W. Lehner, B. Mitschang, H. Schöning, and H. Schwarz, editors, Daten-
banksysteme für Business, Technologie und Web (BTW), 14. Fachtagung
des GI-Fachbereichs ”Datenbanken und Informationssysteme” (DBIS),
2.-4.3.2011 in Kaiserslautern, Germany, volume P-180 of LNI, pages
227–246. GI, 2011.

[16] J. Boyar and K. S. Larsen. Efficient rebalancing of chromatic search
trees. In O. Nurmi and E. Ukkonen, editors, Algorithm Theory -
SWAT ’92, Third Scandinavian Workshop on Algorithm Theory, Helsinki,
Finland, July 8-10, 1992, Proceedings, volume 621 of Lecture Notes in
Computer Science, pages 151–164. Springer, 1992.

[17] N. G. Bronson, J. Casper, H. Chafi, and K. Olukotun. A practical
concurrent binary search tree. In R. Govindarajan, D. A. Padua, and
M. W. Hall, editors, Proceedings of the 15th ACM SIGPLAN Symposium
on Principles and Practice of Parallel Programming, PPOPP 2010,
Bangalore, India, January 9-14, 2010, pages 257–268. ACM, 2010.

[18] S. Chen, P. B. Gibbons, and T. C. Mowry. Improving index perfor-
mance through prefetching. In S. Mehrotra and T. K. Sellis, editors,
Proceedings of the 2001 ACM SIGMOD international conference on
Management of data, Santa Barbara, CA, USA, May 21-24, 2001, pages
235–246. ACM, 2001.

[19] S. Chen, P. B. Gibbons, T. C. Mowry, and G. Valentin. Fractal
prefetching b±trees: optimizing both cache and disk performance. In
M. J. Franklin, B. Moon, and A. Ailamaki, editors, Proceedings of the
2002 ACM SIGMOD International Conference on Management of Data,
Madison, Wisconsin, USA, June 3-6, 2002, pages 157–168. ACM, 2002.

[20] S. Chen and Q. Jin. Persistent b+-trees in non-volatile main memory.
Proc. VLDB Endow., 8(7):786–797, 2015.

[21] J. Ding, U. F. Minhas, J. Yu, C. Wang, J. Do, Y. Li, H. Zhang,
B. Chandramouli, J. Gehrke, D. Kossmann, D. B. Lomet, and T. Kraska.
ALEX: an updatable adaptive learned index. In D. Maier, R. Pottinger,
A. Doan, W. Tan, A. Alawini, and H. Q. Ngo, editors, Proceedings of
the 2020 International Conference on Management of Data, SIGMOD

Conference 2020, online conference [Portland, OR, USA], June 14-19,
2020, pages 969–984. ACM, 2020.

[22] J. Ding, V. Nathan, M. Alizadeh, and T. Kraska. Tsunami: A learned
multi-dimensional index for correlated data and skewed workloads.
Proc. VLDB Endow., 14(2):74–86, 2020.

[23] R. Elmasri and S. B. Navathe. Fundamentals of Database Systems.
Benjamin/Cummings, 1989.

[24] P. Ferragina and G. Vinciguerra. The pgm-index: a fully-dynamic
compressed learned index with provable worst-case bounds. Proc. VLDB
Endow., 13(8):1162–1175, 2020.

[25] J. Fix, A. Wilkes, and K. Skadron. Accelerating braided b+ tree searches
on a gpu with cuda. In 2nd Workshop on Applications for Multi
and Many Core Processors: Analysis, Implementation, and Performance
(A4MMC), in conjunction with ISCA. Citeseer, 2011.

[26] A. Galakatos, M. Markovitch, C. Binnig, R. Fonseca, and T. Kraska.
Fiting-tree: A data-aware index structure. In P. A. Boncz, S. Manegold,
A. Ailamaki, A. Deshpande, and T. Kraska, editors, Proceedings of
the 2019 International Conference on Management of Data, SIGMOD
Conference 2019, Amsterdam, The Netherlands, June 30 - July 5, 2019,
pages 1189–1206. ACM, 2019.

[27] G. Graefe. Modern b-tree techniques. Found. Trends Databases,
3(4):203–402, 2011.

[28] G. Graefe. More modern b-tree techniques. Found. Trends Databases,
13(3):169–249, 2024.

[29] G. Graefe and P. Larson. B-tree indexes and CPU caches. In
D. Georgakopoulos and A. Buchmann, editors, Proceedings of the
17th International Conference on Data Engineering, April 2-6, 2001,
Heidelberg, Germany, pages 349–358. IEEE Computer Society, 2001.

[30] P. Jin, C. Yang, C. S. Jensen, P. Yang, and L. Yue. Read/write-optimized
tree indexing for solid-state drives. VLDB J., 25(5):695–717, 2016.

[31] M. V. Jørgensen, R. B. Rasmussen, S. Saltenis, and C. Schjønning.
Fb-tree: a b+-tree for flash-based ssds. In B. C. Desai, I. F. Cruz,
and J. Bernardino, editors, 15th International Database Engineering
and Applications Symposium (IDEAS 2011), September 21 - 27, 2011,
Lisbon, Portugal, pages 34–42. ACM, 2011.

[32] K. Kaczmarski. B + -tree optimized for GPGPU. In R. Meersman,
H. Panetto, T. S. Dillon, S. Rinderle-Ma, P. Dadam, X. Zhou, S. Pearson,
A. Ferscha, S. Bergamaschi, and I. F. Cruz, editors, On the Move to
Meaningful Internet Systems: OTM 2012, Confederated International
Conferences: CoopIS, DOA-SVI, and ODBASE 2012, Rome, Italy,
September 10-14, 2012. Proceedings, Part II, volume 7566 of Lecture
Notes in Computer Science, pages 843–854. Springer, 2012.

[33] C. Kim, J. Chhugani, N. Satish, E. Sedlar, A. D. Nguyen, T. Kaldewey,
V. W. Lee, S. A. Brandt, and P. Dubey. FAST: fast architecture sensitive
tree search on modern cpus and gpus. In A. K. Elmagarmid and
D. Agrawal, editors, Proceedings of the ACM SIGMOD International
Conference on Management of Data, SIGMOD 2010, Indianapolis,
Indiana, USA, June 6-10, 2010, pages 339–350. ACM, 2010.

[34] A. Kipf, R. Marcus, A. van Renen, M. Stoian, A. Kemper, T. Kraska,
and T. Neumann. Sosd: A benchmark for learned indexes. NeurIPS
Workshop on Machine Learning for Systems, 2019.

[35] A. Kipf, R. Marcus, A. van Renen, M. Stoian, A. Kemper, T. Kraska,
and T. Neumann. Radixspline: a single-pass learned index. In R. Bor-
dawekar, O. Shmueli, N. Tatbul, and T. K. Ho, editors, Proceedings of
the Third International Workshop on Exploiting Artificial Intelligence
Techniques for Data Management, aiDM@SIGMOD 2020, Portland,
Oregon, USA, June 19, 2020, pages 5:1–5:5. ACM, 2020.

[36] T. Kissinger, B. Schlegel, D. Habich, and W. Lehner. KISS-Tree: smart
latch-free in-memory indexing on modern architectures. In S. Chen
and S. Harizopoulos, editors, Proceedings of the Eighth International
Workshop on Data Management on New Hardware, DaMoN 2012,
Scottsdale, AZ, USA, May 21, 2012, pages 16–23. ACM, 2012.

[37] T. Kraska, A. Beutel, E. H. Chi, J. Dean, and N. Polyzotis. The case
for learned index structures. In G. Das, C. M. Jermaine, and P. A.
Bernstein, editors, Proceedings of the 2018 International Conference on
Management of Data, SIGMOD Conference 2018, Houston, TX, USA,
June 10-15, 2018, pages 489–504. ACM, 2018.

[38] Y. Kwon, S. Lee, Y. Nam, J. C. Na, K. Park, S. K. Cha, and B. Moon.
Db+-tree: A new variant of b+-tree for main-memory database systems.
Inf. Syst., 119:102287, 2023.

[39] P. L. Lehman and S. B. Yao. Efficient locking for concurrent operations
on b-trees. ACM Trans. Database Syst., 6(4):650–670, 1981.

[40] T. J. Lehman and M. J. Carey. A study of index structures for main
memory database management systems. In W. W. Chu, G. Gardarin,

13

S. Ohsuga, and Y. Kambayashi, editors, VLDB’86 Twelfth International
Conference on Very Large Data Bases, August 25-28, 1986, Kyoto,
Japan, Proceedings, pages 294–303. Morgan Kaufmann, 1986.

[41] V. Leis, M. Haubenschild, and T. Neumann. Optimistic lock coupling:
A scalable and efficient general-purpose synchronization method. IEEE
Data Eng. Bull., 42(1):73–84, 2019.

[42] V. Leis, A. Kemper, and T. Neumann. The adaptive radix tree: Artful
indexing for main-memory databases. In C. S. Jensen, C. M. Jermaine,
and X. Zhou, editors, 29th IEEE International Conference on Data
Engineering, ICDE 2013, Brisbane, Australia, April 8-12, 2013, pages
38–49. IEEE Computer Society, 2013.

[43] V. Leis, F. Scheibner, A. Kemper, and T. Neumann. The ART of practical
synchronization. In Proceedings of the 12th International Workshop on
Data Management on New Hardware, DaMoN 2016, San Francisco,
CA, USA, June 27, 2016, pages 3:1–3:8. ACM, 2016.

[44] J. J. Levandoski, D. B. Lomet, and S. Sengupta. The bw-tree: A b-
tree for new hardware platforms. In C. S. Jensen, C. M. Jermaine,
and X. Zhou, editors, 29th IEEE International Conference on Data
Engineering, ICDE 2013, Brisbane, Australia, April 8-12, 2013, pages
302–313. IEEE Computer Society, 2013.

[45] P. Li, H. Lu, R. Zhu, B. Ding, L. Yang, and G. Pan. DILI: A distribution-
driven learned index. Proc. VLDB Endow., 16(9):2212–2224, 2023.

[46] Y. Li, B. He, J. Yang, Q. Luo, and K. Yi. Tree indexing on solid state
drives. Proc. VLDB Endow., 3(1):1195–1206, 2010.

[47] J. Liu, S. Chen, and L. Wang. Lb+-trees: Optimizing persistent index
performance on 3dxpoint memory. Proc. VLDB Endow., 13(7):1078–
1090, 2020.

[48] Y. Mao, E. Kohler, and R. T. Morris. Cache craftiness for fast multicore
key-value storage. In P. Felber, F. Bellosa, and H. Bos, editors, European
Conference on Computer Systems, Proceedings of the Seventh EuroSys
Conference 2012, EuroSys ’12, Bern, Switzerland, April 10-13, 2012,
pages 183–196. ACM, 2012.

[49] R. Marcus, A. Kipf, A. van Renen, M. Stoian, S. Misra, A. Kemper,
T. Neumann, and T. Kraska. Benchmarking learned indexes. Proc.
VLDB Endow., 14(1):1–13, 2020.

[50] D. R. Morrison. PATRICIA - practical algorithm to retrieve information
coded in alphanumeric. J. ACM, 15(4):514–534, 1968.

[51] G.-J. Na, S.-W. Lee, and B. Moon. Dynamic in-page logging for b+-
tree index. IEEE Transactions on Knowledge and Data Engineering,
24(7):1231–1243, 2012.

[52] J. Rao and K. A. Ross. Cache conscious indexing for decision-support
in main memory. In M. P. Atkinson, M. E. Orlowska, P. Valduriez,
S. B. Zdonik, and M. L. Brodie, editors, VLDB’99, Proceedings of 25th
International Conference on Very Large Data Bases, September 7-10,
1999, Edinburgh, Scotland, UK, pages 78–89. Morgan Kaufmann, 1999.

[53] J. Rao and K. A. Ross. Making b+-trees cache conscious in main
memory. In W. Chen, J. F. Naughton, and P. A. Bernstein, editors,
Proceedings of the 2000 ACM SIGMOD International Conference on
Management of Data, May 16-18, 2000, Dallas, Texas, USA, pages 475–
486. ACM, 2000.

[54] S. S. Rao, M. H. Huntley, N. C. Durand, E. K. Stamenova, I. D. Bochkov,
J. T. Robinson, A. L. Sanborn, I. Machol, A. D. Omer, E. S. Lander,
et al. A 3d map of the human genome at kilobase resolution reveals
principles of chromatin looping. Cell, 159(7):1665–1680, 2014.

[55] P. V. Sandt, Y. Chronis, and J. M. Patel. Efficiently searching in-
memory sorted arrays: Revenge of the interpolation search? In P. A.
Boncz, S. Manegold, A. Ailamaki, A. Deshpande, and T. Kraska, editors,
Proceedings of the 2019 International Conference on Management of
Data, SIGMOD Conference 2019, Amsterdam, The Netherlands, June
30 - July 5, 2019, pages 36–53. ACM, 2019.

[56] B. Schlegel, R. Gemulla, and W. Lehner. k-ary search on modern
processors. In P. A. Boncz and K. A. Ross, editors, Proceedings of the
Fifth International Workshop on Data Management on New Hardware,
DaMoN 2009, Providence, Rhode Island, USA, June 28, 2009, pages
52–60. ACM, 2009.

[57] J. Sewall, J. Chhugani, C. Kim, N. Satish, and P. Dubey. PALM: parallel
architecture-friendly latch-free modifications to B+ trees on many-core
processors. Proc. VLDB Endow., 4(11):795–806, 2011.

[58] A. Shahvarani and H. Jacobsen. A hybrid b+-tree as solution for in-
memory indexing on CPU-GPU heterogeneous computing platforms. In
F. Özcan, G. Koutrika, and S. Madden, editors, Proceedings of the 2016
International Conference on Management of Data, SIGMOD Conference
2016, San Francisco, CA, USA, June 26 - July 01, 2016, pages 1523–
1538. ACM, 2016.

[59] D. Siakavaras, P. Billis, K. Nikas, G. I. Goumas, and N. Koziris. Efficient
concurrent range queries in b+-trees using RCU-HTM. In C. Scheideler
and M. Spear, editors, SPAA ’20: 32nd ACM Symposium on Parallelism
in Algorithms and Architectures, Virtual Event, USA, July 15-17, 2020,
pages 571–573. ACM, 2020.

[60] L. Wang, Z. Zhang, B. He, and Z. Zhang. Pa-tree: Polled-mode
asynchronous B+ tree for nvme. In 36th IEEE International Conference
on Data Engineering, ICDE 2020, Dallas, TX, USA, April 20-24, 2020,
pages 553–564. IEEE, 2020.

[61] Z. Wang, A. Pavlo, H. Lim, V. Leis, H. Zhang, M. Kaminsky, and
D. G. Andersen. Building a bw-tree takes more than just buzz words.
In G. Das, C. M. Jermaine, and P. A. Bernstein, editors, Proceedings of
the 2018 International Conference on Management of Data, SIGMOD
Conference 2018, Houston, TX, USA, June 10-15, 2018, pages 473–488.
ACM, 2018.

[62] C. Wongkham, B. Lu, C. Liu, Z. Zhong, E. Lo, and T. Wang. Are
updatable learned indexes ready? Proc. VLDB Endow., 15(11):3004–
3017, 2022.

[63] C. Wu, T. Kuo, and L. Chang. An efficient b-tree layer implementation
for flash-memory storage systems. ACM Trans. Embed. Comput. Syst.,
6(3):19, 2007.

[64] J. Wu, Y. Zhang, S. Chen, Y. Chen, J. Wang, and C. Xing. Updatable
learned index with precise positions. Proc. VLDB Endow., 14(8):1276–
1288, 2021.

[65] S. Wu, Y. Cui, J. Yu, X. Sun, T. Kuo, and C. J. Xue. NFL: robust learned
index via distribution transformation. Proc. VLDB Endow., 15(10):2188–
2200, 2022.

[66] Z. Yan, Y. Lin, L. Peng, and W. Zhang. Harmonia: a high throughput
b+tree for gpus. In J. K. Hollingsworth and I. Keidar, editors, Proceed-
ings of the 24th ACM SIGPLAN Symposium on Principles and Practice
of Parallel Programming, PPoPP 2019, Washington, DC, USA, February
16-20, 2019, pages 133–144. ACM, 2019.

[67] H. Zhang, D. G. Andersen, A. Pavlo, M. Kaminsky, L. Ma, and R. Shen.
Reducing the storage overhead of main-memory OLTP databases with
hybrid indexes. In F. Özcan, G. Koutrika, and S. Madden, editors,
Proceedings of the 2016 International Conference on Management of
Data, SIGMOD Conference 2016, San Francisco, CA, USA, June 26 -
July 01, 2016, pages 1567–1581. ACM, 2016.

[68] H. Zhang, G. Chen, B. C. Ooi, K. Tan, and M. Zhang. In-memory big
data management and processing: A survey. IEEE Trans. Knowl. Data
Eng., 27(7):1920–1948, 2015.

[69] H. Zhang, H. Lim, V. Leis, D. G. Andersen, M. Kaminsky, K. Keeton,
and A. Pavlo. Surf: Practical range query filtering with fast succinct tries.
In G. Das, C. M. Jermaine, and P. A. Bernstein, editors, Proceedings of
the 2018 International Conference on Management of Data, SIGMOD
Conference 2018, Houston, TX, USA, June 10-15, 2018, pages 323–336.
ACM, 2018.

[70] J. Zhang and Y. Gao. CARMI: A cache-aware learned index with a cost-
based construction algorithm. Proc. VLDB Endow., 15(11):2679–2691,
2022.

[71] S. Zhang, J. Qi, X. Yao, and A. Brinkmann. Hyper: A high-performance
and memory-efficient learned index via hybrid construction. Proc. ACM
Manag. Data, 2(3):145, 2024.

[72] J. Zhou and K. A. Ross. Implementing database operations using SIMD
instructions. In M. J. Franklin, B. Moon, and A. Ailamaki, editors,
Proceedings of the 2002 ACM SIGMOD International Conference on
Management of Data, Madison, Wisconsin, USA, June 3-6, 2002, pages
145–156. ACM, 2002.

[73] J. Zhou and K. A. Ross. Buffering accesses to memory-resident index
structures. In J. C. Freytag, P. C. Lockemann, S. Abiteboul, M. J. Carey,
P. G. Selinger, and A. Heuer, editors, Proceedings of 29th International
Conference on Very Large Data Bases, VLDB 2003, Berlin, Germany,
September 9-12, 2003, pages 405–416. Morgan Kaufmann, 2003.

14

