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Distance queries, including distance-range queries, k-nearest neighbors search, and distance joins, are very

popular in spatial databases. However, they have been studied mainly for point data. Inspired by a recent

approach on indexing non-point objects for rectangular range queries, we propose a secondary partitioning

approach for space-partitioning indices, which is appropriate for distance queries. Our approach classifies the

contents of each primary partition into 16 secondary partitions, taking into consideration the begin and end

values of objects with respect to the spatial extent of the primary partition. Based on this, we define algorithms

for three popular spatial query types, that avoid duplicate results and skip unnecessary computations. We

compare our approach to the previous secondary partitioning method and to state-of-the-art data-partitioning

indexing and find that it has a significant performance advantage.
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1 Introduction

Large collections of spatial objects with extent, such as polygons, polylines, and so on, are available
in many scientific and application domains, including Geographic Information Systems, graphics
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[22], medical science [32], and location-based services [9]. The problem of indexing spatial objects
which are not points has been studied for decades and has reached a high level of maturity [27].
Given a collection of non-point spatial objects, their minimum bounding rectangles (MBRs) are
computed and added to a spatial index (i.e., spatial access method), such as the R-tree [18]. Spatial
queries are then processed in two steps: in the filter step, the index is used to eliminate objects
that cannot be part of the query result; in the refinement step, the exact geometries of non-filtered
objects are accessed and the query is evaluated on them.

Nevertheless, the data management model has changed over the years. Up until 1–2 decades ago,
the dominant model was to store the data on the hard disk of a single machine and use hierarchical
disk-based indices for MBRs (e.g., the R-tree [18]). Nowadays, given the fact that memory chips
have become much bigger and cheaper, we can store and index large spatial data collections in
memory [41, 42]. In addition, given the advent of cloud computing, we can spatially partition
big spatial data collections to multiple machines and store/index them in their main memories
[1, 14, 31, 43, 46]. In this article, we focus on in-memory spatial indexing and query evaluation.

Space-oriented partitioning (SOP) indices (e.g., grid, quad-tree) divide the space into spatially

disjoint partitions. Data-oriented partitioning (DOP) indices allow overlapping partitions, such
that each object is assigned to exactly one partition. SOP indexing (especially grids) are more
preferable to DOP for large-scale indexing, because partitions relevant to queries can be identified
very fast; hence, searches and updates are much faster compared to DOP indices [23, 29, 30, 35,
40, 47]. In addition, query evaluation over SOP partitions can be easily parallelized; thus, SOP has
become the de facto approach in distributed spatial data management systems [14, 43, 46, 48].

If the indexed data collection consists of points only, disjoint space partitioning by SOP is
guaranteed to assign each point object to exactly one partition. In this article, we focus on non-
point objects, whose geometry is extended. For example, such objects are represented as polygons,
linestrings, and so on. In a disjoint space partitioning (SOP) it might not be possible to guarantee
that the MBR of each object is enclosed by a single partition. Therefore, each object MBR that inter-
sects multiple partitions needs to be replicated to all these partitions. For example, consider the four
rectangles r1, r2, r3, and r4, depicted in Figure 1, which represent the MBRs of parks in a city. Assume
that the data space is divided by a 4 × 4 grid, as shown in the picture, which defines 16 rectangular
tiles T1–T16. The tiles do not overlap each other and their spatial union is the data space (i.e., they
form a SOP index). Three out of the four rectangles (r1, r2, r4) overlap more than one tile, so they are
assigned to multiple tiles (e.g., r2 is assigned toT5 andT6). If a spatial range query intersects multiple
partitions, then it is possible that the same object is identified as a query result multiple times. For
example, a range query that covers both T5 and T6 would produce r2 as a result in both these tiles.
Hence, possible duplicates in query results should be eliminated [12, 48]. Recently, Tsitsigkos et al.
[41, 42] proposed a secondary partitioning approach for the filter step of spatial range queries on non-
point objects. This approach divides the object MBRs inside each SOP partition into four classes
based on whether they begin inside the partition or not in each of the two space dimensions. Given
a range query, only a subset of object classes in each partition is selected, such that the query result
is guaranteed not to have duplicates. Besides avoiding duplicate results, this approach also reduces
the number of comparisons in each partition significantly, improving the overall performance.

In this article, we focus on distance queries over non-point data. Such queries include nearest
neighbor search, ϵ-range queries, and ϵ-distance joins. Distance queries are fundamental in geo-

graphical information systems (GIS), location-based services, transportation, healthcare, and
many other fields. For example, distance range queries facilitate finding residential areas within
a specific radius from a pollution source and distance joins find water bodies within a certain
distance of industrial facilities. If the spatial objects are indexed by a SOP data structure, distance
queries may produce duplicate results. For instance, consider query point q in Figure 1, which may
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Efficient Distance Queries on Non-point Data 1:3

Fig. 1. Distance queries and duplicate results in SOP.

correspond to a mobile user location. Assume that the user is interested in finding the nearest park
to its location; such a nearest neighbor (NN) query would have as a result object r2. This query
would search for the nearest neighbors of q in the nearby tiles toT9 (which includes q) and would
find some objects multiple times (e.g., r1 would be found in T12 and T13 and r2 would be found
in both T5 and T6). The previously proposed approach for handling duplicates [41, 42] fails in the
case of distance-based queries such as NN search because its secondary partitioning is asymmetric,
i.e., the four classes are determined based on the begin point of the rectangle’s projection at each
dimension, whereas the end point of the projection is ignored. A workaround for distance range
queries (called disk queries in [41, 42]) was proposed, but k-NN queries and distance joins were
not studied at all.

Contributions. In this article, we improve upon the secondary partitioning of [41, 42], by defining
four classes per dimension (instead of two), which capture more precisely the position of a rec-
tangle with respect to all directions. The goal is to address distance-based spatial queries (nearest
neighbor queries, range distance queries, distance joins), which cannot be handled by the scheme
of [41, 42]. As a result, in the 2D space, we end up with 16 classes of rectangles. This does not bring
any overhead for rectangular range queries, because each of the 16 classes can be mapped to one
of the original four classes in [41, 42] and the rectilinear range query algorithms can be readily
applied. On the other hand, the definition of the 16 classes can bring a significant performance
improvement for distance queries. Under this premise, we design novel algorithms for the filter
step of both incremental and traditional k-NN search on top of a grid index which adopts our
16-classes secondary partitioning scheme. For each query, we show which partitions need to be
considered at each tile, such that duplicates can be avoided. In addition, for k-NN queries, we
propose a 2-step evaluation approach, which takes advantage of the class cardinalities at each tile
to avoid distance computations for objects that are definitely in the k-NN set. Under the same prin-
ciple, we present a solution also for the distance range or disk queries, another popular distance
query type.

We also study the filter step for the computation of ϵ-distance joins: given two sets of spatial
objects R and S , the objective is to find all pairs of objects (r , s), r ∈ R and s ∈ S , such that
dist(r , s) ≤ ϵ , where dist is the Euclidean distance function. Our objective is to efficiently retrieve
the object MBRs which are within distance ϵ from each other. Given the replication of objects in
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multiple partitions of a SOP index, the main challenge is to avoid producing duplicate pairs. For
example, in Figure 1 if the distance bound ϵ equals the length of the side of a tile, then r2 and
r4 are near each other, but this pair could be reported when examining tile combinations (T1,T5),
(T1,T6), (T2,T5), (T2,T6). Our objective is to avoid considering all object classes when examining
a pair of tiles that would lead to duplicate avoidance and minimize the necessary computations
at the same time. We study ϵ-distance joins under two settings. When none of the inputs are
indexed in advance, we show how to compute the join by first building two temporary secondary
partitioning schemes on top of two grids with the same granularity and then breaking down the
query into small class-to-class join tasks. Otherwise, if both inputs are already indexed by our
secondary partitioning (i.e., to answer typical NN or disk queries) but on top of grids with different
granularities, we devise an online transformation to avoid re-indexing one of the inputs. This
transformation aligns the grids of the two schemes and then uses our class-to-class break down
solution.

Finally, we compare a grid index that implements our secondary partitioning approach against
the state-of-the-art SOP index [41, 42] and the best performing DOP index (an in-memory R-tree
implementation from boost.org) using real data to demonstrate its superiority for incremental NN
and k-NN search, ϵ-range and ϵ-distance join queries.

The contributions of this work can be summarized as follows:

— We propose a secondary partitioning technique for SOP indices over non-point data that is
appropriate for distance queries.

— We design algorithms for the filter step of three popular distance queries that take advantage
of our object classification at each tile for efficient query evaluation with duplicate result
avoidance. We prove the correctness of our approaches.

— We implemented algorithms for traditional and incremental k-NN, ϵ-range, and two differ-
ent algorithms for ϵ-distance joins, based on their partition granularities. We conducted
extensive experiments with state-of-the-art competitors using real data, and demonstrated
the superiority of our approach.

Comparison to previous work. This article extends our previous work in [28], which focused
solely on the nearest neighbor search, i.e., incremental NN and traditional k-NN queries, toward
two directions. Specifically, we consider (1) the computation of another popular type of distance
queries on non-point objects, i.e., the disk or ϵ-range queries (Section 4.3), and (2) the computation
of ϵ-distance joins (Section 5).

Outline. The rest of the article is organized as follows. Section 2 reviews related work. Section 3
presents our secondary partitioning scheme that defines 16 classes of rectangles per tile. In
Section 4, we propose algorithms for incremental NN, k-NN, and ϵ-distance queries using our
scheme and Section 5 addresses ϵ-distance joins. In Section 6, we evaluate our methods and,
finally, Section 7 concludes the article with a discussion about future work.

2 Background and Related Work

In this section, we review related work on spatial access methods, secondary partitioning in SOP
[42], and distance-based queries.

2.1 Spatial Access Methods

The problem of defining data structures for geometric objects emerged from computational
geometry [33]; later it became a popular subject in database research [15]. The first access
methods, including grid files, kd-trees and quad-trees, were designed for range queries over
multidimensional point data [6]. Later, the focus shifted to the more difficult case of indexing
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Efficient Distance Queries on Non-point Data 1:5

extended objects (e.g., polygons, linestrings). These data structures, such as the point-region
quad-tree, are typically extensions of point-data structures that clip objects spanned by partition
boundaries [37]; this is unavoidable if partition boundaries are fixed and partitions are disjoint.

A major departure from this model were DOP methods, which adapt the partition boundaries to
the data distribution and enable overlap between the spatial extents of partitions. The dominant
method in this category are the R-tree [18] and its variants (e.g., the R*-tree [4]), which hierarchi-
cally group the MBRs of objects into nodes to form a multi-way search tree. The primary focus of
indexing in the 80’s and 90’s was to minimize the search I/O cost in range search (and other spatial
queries), given that the data structures do not fit in memory and they are disk based.

More recently, the focus has shifted to main-memory indexing, due to the increase of memory
capacities compared to the data volumes to be indexed. Indeed, most collections for non-point
objects (e.g., geographic data) are not huge in terms of numbers of objects, but they could occupy
a lot of space, mainly due to the potentially high complexity of each individual object (e.g., a
polygon representation of a single geographic object could have thousands of edges). This means
that the MBR approximations of objects typically fit in the memory of a commodity machine and
main-memory indexing is feasible. Given this, the state-of-the-art DOP approaches such as efficient
R-tree implementations (e.g., see www.boost.org) may lose their advantage over SOP approaches,
such as grids [30, 40], which are designed for speedy searches and updates.

Following the recent trend on machine learning, learned indices for spatial data were proposed
[10, 13, 16, 17, 25, 34, 44]. Al-Mamun et. al. [2] present an extended survey about the multi-
dimensional learned indices. Most of these methods do not support k-NN queries and those which
do apply on point data only, whereas the focus of our research is on non-point data. In [13] authors
proposes a learning approach that improves the construction of an R-tree, based on the query work-
loads; they support range and approximate k-NN queries. RLR-tree [17] propose machine learning
models that improve the construction of an R-tree in the presense of workloads with large number
of insertions, where bulkloading is not effective. PLATON [44] is a top down tree packing method
that leverages Monte Carlo tree search to discover an optimal partition policy. These indices are
not directly comparable to our work, as their goal is to minimize the I/O cost.

2.2 Secondary Partitioning for SOP

SOP approaches are designed for point data, where each data object (point) is assigned to exactly
one partition. When applied on non-point data (e.g., MBRs) some objects may have to be repli-
cated (or clipped) to multiple partitions. This introduces space overhead, which is not high in real
applications (e.g., GIS), where the partition extents are significantly larger than the extents of data
objects. Still, an important issue in having duplicates is that a query may potentially retrieve the
same result twice if the object is included in multiple partitions.

For example, consider the six MBRs r1 . . . r6 partitioned by a spatial grid as shown in Figure 2;
each rectangle is assigned all tiles that intersect it (e.g., r3 is assigned to tilesT1 andT2). The range
query defined by rectangleW should retrieve all MBRs that intersect it (e.g., r2 and r3). However,
if the query is processed independently in each of the 9 tiles that intersect it, r2 will be retrieved
four times and r3 will be retrieved two times.

Duplicate results can be avoided by the definition and use of a reference point for each rectangle
ri that intersects W [12]. For example, the reference point could be the smallest x and y values
of the rectangle which is the common area of ri and W . Then, each tile Tj processes the query
independently, and for each result ri , it computes the reference point. If the reference point is
inside Tj , then ri is reported; otherwise, it is ignored. This ensures that there will be no duplicate
results, because the reference point is guaranteed to be inside a single tile only. For example, r2

will be reported only by tile T0.
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Fig. 2. Primary and secondary partitioning [41, 42].

Still, duplicate avoidance by the reference point approach does not save the cost of computing
query results before eliminating them. For example, T1 will have to first identify r2 as result, then
compute the reference point, and finally ignore r2 because the reference point is not inside T1.
Tsitsigkos et al. [41, 42] proposed a secondary partitioning technique, which divides the MBRs in
each tile into four classes based on whether they begin inside or before the tile in each dimension.
For example, r2 inT4 is classified as class B rectangle because it begins insideT4 in dimension x but
before T4 in dimension y. For each (rectangular) range query W , the query evaluation approach
of [42] selects for each tile Tj intersectingW , only the classes that would not produce duplicates.
For example, in Figure 2, for tile T4, only rectangles of classes A and C will be compared to W ,
because any rectangle in classes B and D that intersectsW would be a duplicate result (e.g., r2 will
be reported in tile T0). This approach not only avoids duplicate results, but also saves the effort of
computing them.

2.3 Distance-based Queries

In this article, we focus on distance-based queries, including distance-range queries (e.g., find
all objects within distance at most ϵ to my current location), k nearest-neighbor (k-NN) queries
(e.g., find the 10 nearest objects to my current location), and ϵ-distance joins (e.g., find pairs
of lakes and forests having distance at most ϵ). Below, we provide formal definitions of these
queries.

Definition 1 (ϵ-range Query). Given a collection of spatial objects R, a query point q, and a
distance bound ϵ , the ϵ-range query retrieves the subset R′ of objects in R, such that ∀r ∈
R′,dist(q, r ) ≤ ϵ and ∀r ∈ R \ R′,dist(q, r ) > ϵ . dist(q, r ) refers to the minimum Euclidean dis-
tance between q and object r .

Definition 2 (k-NN Query). Given a collection of spatial objects R, a query point q, and a positive
integerk , such thatk is smaller than the number of objects inR, thek-nearest neighbor query (kNN
query) retrieves a subset R′ of k objects in R, such that ∀r ∈ R′, r ′ ∈ R − R′,dist(q, r ) ≤ dist(q, r ′).
dist(q, r ) refers to the minimum Euclidean distance between q and object r .

Definition 3 (ϵ-distance Join). Given two collections of spatial objects R and S and a distance
bound ϵ , the ϵ-distance join query retrieves the subset J of R×S , such that for every pair of objects
(r , s) ∈ J , dist(r , s) ≤ ϵ and for every pair of objects in (r , s) ∈ R × S \ J , dist(r , s) > ϵ . dist(r , s)
refers to the minimum Euclidean distance between objects r and object s .
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Efficient Distance Queries on Non-point Data 1:7

Previous work on distance-based queries has mainly focused on point data, although it can be
extended for non-point objects. A distance range query can be processed similarly to a rectangular
range query; the partitions of the spatial index having minimum distance greater than the distance
bound ϵ to the query object q are pruned, whereas the others are explored. In the case of a hierar-
chical index (e.g., R-tree), search is conducted in a depth-first manner, following the index entries
(partitions) having distance at most ϵ from q. Since the MBR M(r ) of an object r spatially contains
r , we can easily show thatdist(q,M(r )) ≤ dist(q, r ). Hence, spatially indices can effectively be used
to prune objects r such that dist(q,M(r )) > ϵ , as they may not be query results; for the retrieved
objects having dist(q,M(r )) ≤ ϵ , a refinement step may be necessary to find whether the object
is within distance ϵ from q. Still, if the minimum maximum distance (MINMAXDIST) [36]
between q and an MBR is at most ϵ , the objects is guaranteed to be a result without a refinement
step.

For k-NN queries, we can extend the depth-first search algorithm to explore the space using
the index while keeping in a k-maxheap H the k-NNs found so far [36]. If the distance of an index
entry (partition) is greater than the distance of the k-th NN, the entry (partition) can be elimi-
nated. This approach was extended to form the popular distance browsing algorithm [20], which
organizes the entries (partitions) to be examined in a priority queue Q (i.e., a minheap), such that
the entry whose extent has the smallest minimum distance to q is at the top ofQ . At each iteration,
the top entry e of Q is de-heaped; if e is a partition containing objects (e.g., a leaf node of the
R-tree) or smaller partitions (e.g., a non-leaf node of the R-tree), its contents (objects or extents of
smaller partitions) are added to Q ; otherwise, e is an object and it is reported as the next neighbor
of q. This approach can readily be used for incremental NN search, where k is not specified and
the user/application would like to retrieve objects in increasing distance to q until a satisfactory
number of objects are retrieved or any other condition holds. For example, a user may retrieve the
nearest restaurant, examine it, decide that it is not appropriate, continue to get the next nearest
restaurant, and so on until the user is satisfied. In both cases of k-NN queries and incremental NN
queries, objects can be examined in order of their distances between their MBRs and q and a refine-
ment step can be applied as necessary to find the nearest neighbors according to the actual object
geometry.

The algorithm of [20] has been widely used in many contexts, most notably for similarity queries
in multi-dimensional spaces [8]. It has also been used in combination with fast-to-update SOP
indexing for k-NN queries over moving objects. Specifically, Mouratidis et al. [30] proposed the
use of a spatial grid to monitor the locations of moving objects. To answer a k-NN query, the
tiles of the grid are accessed incrementally based on their distances to the query location q, until
the k-NNs are guaranteed to be found (i.e., the minimum distances tiles not accessed yet to q is
greater than the next neighbor’s distance). To avoid computing the minimum distance from q to
a large number of tiles, the tiles are hierarchically grouped into stripes and entire tile groups can
be eliminated. This approach, like the majority of previous work on NN search, focuses on point
data; in the next sections, we show how we can apply our secondary partitioning scheme on SOP
indices to efficiently perform distance-based search on extended objects.
ϵ-distance join algorithms extend previous work on spatial intersection joins [7] by replacing

the intersection condition between partitions by a minimum distance condition [38]. Grid-based
evaluation of ϵ-distance joins was investigated (among other works) in [5]. Finally, an alternative
definition of distance joins, where the objective is to retrieve the k-closest pairs was studied
in [11, 19].

In the rest of the article, we present our methodology for enhancing SOP indices to effectively
support evaluation of distance queries over objects with spatial extent (i.e., non-point objects).
Table 1 presents the frequently used notation in the article.
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Table 1. Table of Notations

notation description

R, S collections of spatial objects
r , s spatial objects
d dimensionality

T grid index
T partition (tile) in a grid index

q query location
ϵ distance bound (real number)
k number of required neighbors (positive integer)
Tq partition (tile) that includes query point q
G group of partitions (tiles)
Q Minheap of objects/tiles/groups in NN algorithms
H k-maxheap with kNN results so far
δ width/length of a tile
λ level around Tq with possible kNN results
μ level around Tq with guaranteed kNN results

Fig. 3. Class decomposition per axis.

3 Class Decomposition

The secondary partitioning approach proposed in [41, 42] was mainly designed for rectangular
range queries and not for distance-based queries. Recall, from Section 2.2, that this scheme divides
the contents of a tile in four classes, depending on whether the begin points (i.e., values) of the
object’s projections in each axis begin inside or before the tile. On the other hand, the end points
of the projections are not considered. As a result, given a tile T and the class of an object o which
is assigned toT , we may not be able to infer a tight lower bound for the distance between o and a
query object q, if the tile is before q in one or both dimensions.

Given this, we propose to define secondary partitions of a tileT (or an SOP partition in general)
based on both the begin and end points of the objects assigned toT . Figure 3 shows the four cases
of an object’s projection w.r.t. the projection of a tile T whereto o is assigned. The object could be
insideT , start insideT and end afterT , start beforeT and end insideT , or start before and end after
T . The four cases are encoded by two bits, as shown in the figure. The first bit position refers to
the begin point of the object’s projection and the second to the end point of the object’s projection.
Bit value 0 denotes that the begin (end) point is inside T , whereas bit value 1 means that the end
point is before (after) T .
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Efficient Distance Queries on Non-point Data 1:9

Fig. 4. Class decomposition in a 2D tile.

To encode divisions of a tile (partition)T in the d-dimensional space, we need 2 ·d bits, i.e., two
per dimension, because we have d projections ofT (and the objects); this results into 22d partitions.
Hence, in the 2D space, we have 24 = 16 classes of objects (i.e., secondary partitions of a tile T ),
as illustrated in Figure 4. In this figure, a tile T is denoted by the dark gray square and each of
the 16 examples show a case of an object o (light gray rectangle), which belongs to each of the
16 divisions. For example, the upper-left corner shows an object belonging to class 0000, as the
object is inside the tile in both dimensions; class 0001 means that the object is inside the tile in
dimension x , but starts inside and ends outside the tile in dimension y, and so on.

Given the above classification, our proposed indexing scheme partitions the objects (object
MBRs) using an SOP index (e.g., a grid), such that each object o is assigned to all partitions (e.g.,
tiles) whose spatial extent intersects o. Within each tile, the assigned objects, are re-partitioned
to classes (i.e., 16 classes in the 2D space). We next show how our re-partitioning scheme can be
used to evaluate distance-based queries efficiently and without producing duplicate results. In a
nutshell, while processing a query, we (1) minimize the number of classes to be considered at each
tile (and, hence, minimize the number of objects to be considered overall in each tile), (2) avoid
duplicate results, and (3) use the class cardinalities to overall avoid comparisons for some query
results.

4 Nearest Neighbor and ϵ-Range Queries

In the next two sections, we discuss how to use our secondary partitioning scheme to efficiently
answer distance queries. This section focuses on queries with a single set of rectangles as input;
specifically, it presents algorithms for NN search and distance range queries. We start with an
algorithm for incremental NN search (a.k.a. distance browsing [20]), where the number k of
desired NNs is not specified a priori and the user would like to retrieve the objects in increasing
distance from the query object q, until an ad-hoc stopping condition is met. Then, we propose
an algorithm that takes advantage of a user-specified number k of NNs, to reduce the number
of distance computations and en-heaping/de-heaping operations. The processing of ϵ-distance
range queries directly follows from the k-NN evaluation algorithm. Throughout the presentation,
we assume that the query object q is a point; however, the distance-range and NN algorithms can
be applied also for non-point query objects, in a straightforward manner.
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Fig. 5. Tile types; grouping and distribution in space.

Although the algorithms can be adapted for all SOP indices (e.g., arbitrary grids, quad-trees, k-d-
trees), we will assume that the set R of data objects (i.e., object MBRs) are indexed by a regular grid,
where the domain of each dimension is divided into N equi-width partitions. Hence, we assume
a n × n grid T , where each object is assigned to all tiles (cells) that intersect it and the objects in
each tile are re-partitioned based on our classification scheme, presented in Section 3.

4.1 Incremental NN Search

Consider a query location q and assume that we want to retrieve the NNs of q in R incrementally,
in increasing distance. Our incremental NN search algorithm extends the method of [30], which
was originally proposed for point objects. In a nutshell the tiles of the grid are divided into groups
based on their orientation w.r.t. tileTq , which includes the query object q, as shown by the oblongs
in Figure 5 (left).Tq forms a group by itself. The 8 neighboring tiles ofTq are grouped to 4 groups,
each having 2 tiles; the next level of 16 tiles are grouped to 4 groups of 4 tiles each, and so on. In
general, the nth level of tiles aroundTq includes 8n tiles, which are split to four tile groups on the
top, bottom, left, and right of Tq .

The incremental NN search algorithm (Algorithm 1) initializes a priority queueQ (minheap) and
adds all objects in Tq to Q , which organizes them in increasing order of their minimum Euclidean
distance to q. Obviously, objects that contain q (if any) have distance 0. The algorithm also adds
to Q the 4 tile-groups G that are neighbors to Tq (level-1 tile-groups), using as key minimum
distance between q and the extent of the tile-group (Function NeiдhborinдGroups). It then runs a
while-loop, which incrementally yields the NNs of q. At each iteration, the top entity c in the heap
Q is de-heaped. If c is an object, then c is returned as the next NN of q (Line 16). If c is a group
of tiles, then we add to Q (1) the neighboring group д of c at the next level (NextLevelGroup(c))
and (2) each tileTc ∈ c (Lines 7–10). The neighboring (i.e., next-level) group of c is the one having
the same direction as c w.r.t. q (i.e., to the left, right, top, or bottom) and it is one level beyond
c w.r.t. q.

Lastly (Lines 11–14), if c is a tile, for some of the object classes, all objects of these classes in c
are en-heaped to Q . Figure 5 (right) shows how to define 9 types of the tiles depending on their
relative direction w.r.t. the tile Tq which contains q. For each of these nine types of tiles, different
classes are considered as shown in the legend of the figure (top). For example, if c is a tile of type
6, only objects of c in classes 0000, 0001, 1000, 1001 are en-heaped; we encode this set of classes
using the X00X notation, where “X” represents a bit equal to either 0 or 1. The reason for this
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ALGORITHM 1: Incremental NN Search

Input :query point q, grid index T of rectangle set R
Output :next NN of q in R

1 Tq ← tile of T that contains q;

2 G ← NeiдhborinдGroups(Tq );
3 Q ← new Min-Heap; add to Q (1) all rectangles of Tq and (2) all д ∈ G;

4 while Q is not empty do

5 c ← Q .pop(); // c is next nearest heap element to q

6 if c is a group of tiles then

7 д← NextLevelGroup(c);
8 Q .push(д);
9 foreach tile Tc ∈ c do

10 Q .push(Tc );

11 else if c is a tile then

12 rectArr = get rectangles in c based on tile type;

13 foreach rectangle r ∈ rectArr do

14 Q .push(r );

15 else // c is an object
16 yield c; // c is the next NN

is that the objects in other classes are also included in neighboring tiles that are closer to q and
therefore these objects would have been added to Q earlier. If we add them again to Q , then we
could produce duplicate results in the NN set. The selection of classes for each tile c based on the
relative direction of c w.r.t. Tq is established by the following theorem:

Theorem 1. For each dimension d , let BE be the pair of bits characterizing the rectangle classes

in a tile c w.r.t. d . If tile c is before (after) Tq in dimension d , then all rectangle classes in c for which

E =1 (B =1) should not be en-heaped to Q in Lines 12–14 of Algorithm 1, because they will produce

duplicates.

Proof. If a class in tile c has E =1 (B =1), this means that all the rectangles in the class also
appear in the tile cnext that follows (precedes) c in dimension d . However, since c is before (after)
Tq in dimension d , cnext is guaranteed to be closer to q compared to c , meaning that the rectangles
will be accessed before by the NN search when cnext is processed. Hence, including the rectangles
of this class to Q would produce duplicate results in the NN search. �

Overall, the value of the object classification in each tile that we have proposed in Section 3 is
twofold: (1) avoid the need to detect and eliminate duplicate results in NN queries, and (2) minimize
the number of objects added to Q , as each object is guaranteed to be en-heaped at most once.

4.2 k-NN Search

(k-NN query) The k-NN is an extension of the NN query, where we include a parameter, which
specifies the number of nearest neighbors to be retrieved.

Knowing the number k of desired neighbors allows us to prune objects and tiles, and to control
the size of the priority queueQ . This is done by keeping track in a maxheap H the set of the k-NN
objects so far. The top H .top of H holds the object with the kth distance to q found so far. Distance
H .top.dist between H .top and q can be used as a bound for eliminating tiles and tile-groups.
Hence, we do not add to Q any objects, but only tiles and tile-groups which have minimum
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ALGORITHM 2: k-NN Search

Input :query point q, grid index T of rectangle set R
Output :k-NNs of q in R

1 Tq ← tile of T that contains q;

2 H ← create k-maxheap and push to H all rectangles of Tq ;

3 G ← NeiдhborinдGroups(Tq );
4 foreach tile-group д ∈ G do

5 if |H | < k or dist(д,q) < H .top.dist then

6 Q .push(д);

7 while Q .nonempty() and (|H | < k or Q .top.dist < H .top.dist ) do

8 c ← Q .pop();
9 if c is a group of tiles then

10 д← NextLevelGroup(c);
11 if |H | < k or dist(д,q) < H .top.dist then

12 Q .push(д);
13 foreach tile Tc ∈ c do

14 if |H | < k or dist(t ,q) < H .top.dist then

15 Q .push(Tc );

16 else if c is a tile then

17 rectArr = get rectangles in c based on tile type;

18 foreach rectangle r ∈ rectArr do

19 if |H | < k or dist(r ,q) < H .top.dist then

20 H .push(r );

21 return H ;

distance to q smaller than or equal to H .top.dist . This greatly reduces the size of Q and may help
to compute the k-NN result faster than the approach of applying the incremental NN algorithm
until k objects have been returned. Algorithm 2 is a pseudo-code of our k-NN search procedure,
which uses two heaps. Note that we start pruning groups/tiles as soon as the size |H | of H
reaches k .

4.2.1 Avoiding Comparisons in k-NN Search. The performance of our k-NN search algorithm
can be further improved, by taking advantage of existing statistics that we keep in the grid T .
Specifically, for a certain set of tiles, we can guarantee that all objects in them are k-NN results
(considering only the relevant classes for each such tile, according to Theorem 1 and as shown in
Figure 5). Hence, we do not need to compute distances between q and these objects and en-heap
them into H .

For this, we first compute the level λ of tiles around tile Tq (which contains the query location
q) up to which it is necessary to search until we can guarantee the computation of the k-NN set
(Tq is at level 0). Starting fromTq , we count the number of objects in each tile at the levels around
Tq , in the order examined by the k-NN algorithm. At each such level, we compute the number
of objects, excluding classes that could produce duplicates, based on the direction of the tiles and
according to Theorem 1. We continue counting until the number of rectangles counted including
the currently examined level λ becomes at least k .

Given λ, we apply Theorem 2 to determine the level μ that guarantees all the rectangles in all
tiles up to that level (inclusive) are certain query results.
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Fig. 6. k-NN search based on μ-optimization.

Theorem 2. All rectangles, considering only the relevant classes of the tiles w.r.t. to Tq shown in

Figure 5, up to level μ = �(λ − 1)
√

2/2 − 1	 are certain k-NN results.

Proof. Assume that the smallest number of levels aroundTq which include at least k rectangles
is λ, as illustrated in Figure 6. For each rectangle ri in any partition at level λ, considering only the
classes specified by Theorem 1, we have:

(λ − 1)δ ≤ dist(ri ,q), (1)

where δ is the width/height of a tile in grid T .
Now, consider the tileT ∈ T at a level μ < λ, which is the furthermost to q (in Figure 7, it is the

rightmost tile from the top group at the μ-th level). For this tile, we havemaxdist(T ,q) = (μ+1)δ
√

2,
hence for each rectangle r j at level μ, we have:

dist(r j ,q) ≤ (μ + 1)δ
√

2 (2)

Based on Equations (1) and (2), all rectangles of tile T are definitely in the k-NN result if:

(μ + 1)δ
√

2 ≤ (λ − 1)δ ⇒ μ ≤
√

2

2
(λ − 1) − 1

Hence, the maximum value of μ for which all rectangles in tiles up to level μ are definite k-NN

results and no distance computations and comparisons are needed for them is �
√

2
2 (λ − 1) − 1	. �

Assume that the number of sure results at all levels up to μ is k ′. After reporting all these results,
we retrieve all rectangles (just the relevant classes) from levels μ + 1 to λ, compute their distances
to q and keep track of the (k−k ′) nearest ones in heapH . Unlike Algorithm 2, we avoid the use and
maintenance of the priority queueQ up to level λ. Finally, we initialize HeapQ with the tile-groups
of level λ + 1 and follow the process described in Algorithm 2, for k − k ′.

Algorithm 3 shows the steps of the k-NN algorithm based on the computation of levels λ and
μ. Figure 7 illustrates an example of a 20-NN search. We begin from the tile containing the query

ACM Trans. Spatial Algorithms Syst., Vol. 11, No. 1, Article 1. Publication date: November 2024.



1:14 A. Michalopoulos et al.

Fig. 7. 20-NN search based on μ-optimization.

ALGORITHM 3: Enhanced k-NN Search

Input :query point q, grid index T of rectangle set R
Output :k-NNs of q in R

1 λ← ComputeLambda(q,T);
2 μ ← �(λ − 1)

√
2/2 − 1	;

3 Res ← all rectangles in tiles up to level μ;

4 k ← k − |Res |;
5 Tq ← tile of T that contains q;

6 H ← create k-maxheap and push to H all rectangles at levels μ + 1 to λ;

7 G ← NeiдhborinдGroups(Tq , λ); // groups at level λ + 1

8 Q ← new Min-Heap; add to Q all д ∈ G;

9 Lines 7–20 of Algorithm 2;

10 return Res ∪ H ;

point q and expand up to level λ = 4, which is the smallest level that includes at least 20 objects
(specifically, 26). According to Theorem 2, the k ′ = 6 objects up to level μ = 1 (dark gray rectangles
in the dashed square) can be promptly reported as results without requiring distance verification.
Then, k is updated to k − k ′ = 14. For objects belonging to levels 2 to 4, their distances to point q
are computed and added to heap H . Additionally, the tile groups at level λ+1 = 5 are inserted into
the priority queue Q , as it is possible that some of the k-NNs are in tiles at a level beyond λ. From
thereon, the algorithm proceeds like Algorithm 2 to compute the 14-NN set beyond level μ = 1.

Theorem 2 is not directly applicable for non-uniform grids, as it computes μ algebraically based
on λ. However, we can apply the same idea behind Theorem 2 on a non-uniform grid to identify
cells that contain objects in the kNN set without distance computations. Specifically, in the case
of non-uniform grids the level λ may not be the same in all directions around Tq , i.e., the tile that
includes q. To compute the number of levels at each direction, which are guaranteed to include at
least k objects, we expand one level at the time at the currently nearest direction (up, down, left, or
right) to q, until the number of cells in the expansion area include at least k unique object MBRs. In
the end, this will form an outer rectangular area that includes the kNN results. LetD be the smallest
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distance from q to any of the boundaries of this rectangular area. Then, the inner rectangular area

with guaranteed kNN results (corresponding to level μ in Theorem 2) is computed by gradually
expanding around Tq and including levels in each direction while the largest distance from q to
any of the corners of the inner rectangular area is smaller than D.

4.3 ϵ-range Queries

Distance range queries, where the objective is to retrieve all objects having distance at most ϵ from
a query point q, can easily be evaluated, given our class decomposition. Specifically, we directly
report the rectangles in all tiles whose maximum distance is at most ϵ from q. These tiles include
all those in the rectangle Φ that comprises of the tiles having maximum x-distance and y-distance

from q at most ϵ/
√

2. Hence, for all such tiles we directly report all rectangles in all tiles in Φ as
results (considering only the relevant classes as dictated by Theorem 1 and shown in Figure 5).
For all other tiles T intersecting the query range, (1) if maxdist(T ,q) ≤ ϵ , we directly report all
rectangles inT as results, (2) otherwise, for each r ∈ T , if dist(r ,q) ≤ ϵ , we report r as result. Note
that only the relevant rectangle classes are considered at each tile T , according to Theorem 1, as
already discussed.

5 ϵ-distance Joins

In this section, we explore the efficient evaluation of ϵ-distance joins using our proposed secondary
partitioning scheme. Recall that this problem takes as input two collections R and S of spatial
objects and a distance bound ϵ and the objective is to find the object pairs (r , s) ∈ R × S , such that
dist(r , s) ≤ ϵ . As before, we focus on the filter step of the query, meaning that we are seeking for
MBR pairs having minimum distance from each other at most ϵ .

We study the problem under different indexing assumptions for the input sets R and S . The first
case to handle is when both input sets R, S are already indexed by the same grid. For this case,
we show in Section 5.1 how to exploit our secondary partitioning scheme in order to perform the
distance join efficiently and without production of duplicates. In a nutshell, when we examine the
objects in two tiles to find pairs in them within distance ϵ , we consider only object classes in the
tiles that would not produce duplicates, based on the relative orientation of the tiles.

In the case where no index exists for the two datasets, we partition R and S on-the-fly using a
regular grid, where each tile has extent ϵ/2×ϵ/2, create secondary partitions at each tile, and then
apply our approach. In the case where one of the two datasets is already indexed by a grid with
secondary partitions, we choose to create an index for the second dataset using an identical space
partitioning (i.e., the same grid lines).

Finally, in Section 5.2, we study the case where both datasets are indexed by non-identical grids.
If the two grids have coinciding lines but the grids are of different granularity, we propose an online
transformation technique, which maps the finer granularity to the coarser one before proceeding
with the ϵ-distance join. This technique exploits the existing indices and avoids the expensive re-
partitioning of the data. In the case of different and misaligned grids for the two datasets, we select
one of the two input datasets and create a new temporary index with the same granularity as the
grid of the other dataset.

Similar to Section 4, our join techniques can be applied to other SOP indices as well, but for
illustration purposes, we assume regular n × n grids are used for the primary partitioning of the
space.

5.1 Identical Grids

To simplify the notation for the rest of this subsection, we assume that both input sets are primarily
indexed under the same grid T . We first discuss the setting where the projection of the grid tiles
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Fig. 8. Illustration of a distance join: joining T x,y tile to itself and the 8 surrounding tiles.

in each dimension is equal to or greater than the query distance threshold ϵ ; later, we will discuss
the case when these projections are lower than ϵ .

With grid T in place, inputs R, S are partitioned into sets of primary partitions TR and TS , while
each partition in these sets is further divided in 16 classes as proposed in Section 3. Now, to evaluate
an ϵ-distance join efficiently, it suffices to traverse grid T and compute a series of partition-to-
partition joins for each tile. Specifically, consider tileT x,y . We perform a distance join between the

partition T
x,y
R

from TR and nine partitions in TS (if they exist): T
x−1,y−1
S

, T
x−1,y
S

, T
x−1,y+1
S

, T
x,y−1
S

,

T
x,y
S

, T
x,y+1
S

, T
x+1,y−1
S

, T
x+1,y
S

, T
x+1,y+1
S

; these S-partitions correspond to tile T x,y and its eight
surrounding tiles; we also refer to these tiles as joinable. As the projection of each grid tile is equal
to or greater than the query threshold ϵ , the rest of the partitions in TS contain object rectangles
from S located farther than ϵ from any R object in partition T

x,y
R

, by definition of the grid T .

Figure 8 illustrates an example of a tileT x,y (in the center) which corresponds to a partitionT
x,y
R

having five rectangles r1 to r5. The figure also shows the nine partitions from S which include all
rectangles from S that will be joined with T

x,y
R

. Simply joining T
x,y
R

to all nine partitions from S

would produce duplicate results. For example, pair (r1, s12)will be reported in bothT
x,y
R
� T

x,y
S

and

T
x,y
R
� T

x−1,y
S

, as s12 appears in bothT
x,y
S

andT
x−1,y
S

. We next elaborate on the spatial distance join
between two partitionsTR and TS , from TR and TS respectively, which avoids producing duplicate
results using the rectangle classes by our secondary partitioning (Section 3).

The T
x,y
R
� T

x,y
S

case. We first discuss the case where TR and TS correspond to the same tile

T , i.e., TR = T
x,y
R

, TS = T
x,y
S

, and T = T x,y . Since there are 16 classes in each of TR and TS ,
the total number of possible distance joins between the corresponding partition subdivisions is
16 × 16 = 256. Out of these class-to-class joins, we skip 112 joins, whereas from the remaining 144
joins, 95 of them reduce to cross products which simply enumerate join results without distance
computations; the remaining 49 joins are evaluated by verifying the distances between objects,
as in a typical distance join. Figure 9 shows which pairs of classes correspond to each case. The
following lemmas determine the case whereto each possible class-class join belongs.

Lemma 1 (Pruned Class Pairs). Assume that TR and TS correspond to the same tile T . For each

pair of rectangle classesCR fromTR andCS fromTS for which there exists a dimension d such that for

ACM Trans. Spatial Algorithms Syst., Vol. 11, No. 1, Article 1. Publication date: November 2024.



Efficient Distance Queries on Non-point Data 1:17

Fig. 9. Pairs of classes checked for T
x,y
R
� T

x,y
S

.

both CR and CS the first bit is set to 1 in d , join pair (CR ,CS ) should be skipped, otherwise duplicate

join results could be reported.

Proof. If both CR and CS have their first bit set in dimension d , this means that all rectangles
in CR and CS begin before T in dimension d . Therefore, any join result should be reported in the
previous tile to T in dimension d . �

For example, in the 2D space consider class pairCR = 0010 andCS = 0010. In Figure 8, partitions
T

x,y
R

and T
x,y
S

in the central tile include r5 and s10 in classes CR and CS , respectively. Both classes
have 1 at position 2, which indicates that all rectangles inCR and all rectangles inCS begin before
tile T x,y in dimension y. So, all join pairs (rR , rS ), rR ∈ CR , rS ∈ CS , such as (r5, s10) should not be

reported by T
x,y
R
� T

x,y
S

as they will be considered in T
x,y−1
R

� T
x,y−1
S

. Such class pairs are called
pruned class pairs.

Lemma 2 (Cross-product Class Pairs (Case 1)). Assume thatTR andTS correspond to the same

tileT . For each non-pruned pair of rectangle classesCR fromTR andCS fromTS for which there exists

a dimension d such that for both CR and CS the two bits are 01, all (rR , rS ), rR ∈ CR , rS ∈ CS can

immediately be reported as results without any comparisons.

Proof. Consider two rectangles rR ∈ CR and rS ∈ CS . In dimension d , both rR end after T in
dimension d , crossing the boundary of T . Hence the minimum distance between them should be
their distance in the other dimension. As the distance in one dimension cannot exceed ϵ based on
the definition of the grid T , pair (rR , rS ) is definitely a join result. �

As an example, consider again rectangles r5 and s10 of Figure 8 in partitions T
x,y−1
R

and T
x,y−1
S

,

respectively, which belong to classesCR = 0001 andCS = 0001 in these partitions. WhenT
x,y−1
R

�
T

x,y−1
S

is computed, pair (r5, s10) is directly reported as a result, because the x-distance between
the two rectangles is guaranteed not to exceed ϵ and their y-distance is guaranteed to be zero.

Lemma 3 (Cross-product Class Pairs (Case 2)). Assume thatTR andTS correspond to the same

tileT . For each non-pruned pair of rectangle classesCR fromTR andCS fromTS for which there exists
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a dimension d such that for one of CR and CS the two bits are 11, all (rR , rS ), rR ∈ CR , rS ∈ CS can

immediately be reported as results without any comparisons.

Proof. Consider two rectangles rR ∈ CR and rS ∈ CS . W.l.o.g. assume that the two bits ofCR in
d are 11. This means that rR starts before and end after tile T in d . Hence, the minimum distance
between any rS ∈ CS and rR is their distance in the other dimension, which cannot exceed ϵ and
(rR , rS ) is a definite a join result. �

For example, in the central tile of Figure 8, consider class pair CR = 0000 of T
x,y
R

containing

rectangle r1 andCS = 1100 ofT
x,y
S

containing rectangle s11. All rectangles inCS , such as s11 begin
before and end afterT in dimension x . For every rectangle rR ∈ CR , such as r1, the distance between
rR and all rectangles in CS cannot exceed their y-distance which is at most ϵ .

The T
x,y
R
� T

x ′,y′

S
case. Now consider the join between two neighboring partitions TR and TS ,

which do not correspond to the same tile T . Once again, we avoid performing all 256 class-to-
class joins as duplicate results could be produced by them. In a nutshell, we do not perform joins
between classes whose rectangles extend beyond their tile (e.g., TR ) in the direction of the other

tile (e.g., TS ) in any dimension. For example, in the join T
x,y
R
� T

x−1,y
S

of Figure 8, we skip class

pair CR = 0000, CS = 0100, because the rectangles in CS (e.g., s12) also appear in partition T
x,y
S

and if they join with any rectangle inT
x,y
R

the pair (e.g., (r1, s12)) will be found during joinT
x,y
R
�

T
x,y
S

. The following lemma establishes which class pairs can be skipped when joining partitions
corresponding to different tiles.

Lemma 4. Assume that TR and TS do not correspond to the same tile T . For each pair of rectangle

classes CR from TR and CS from TS for which there exists a dimension d such that there is a 1 bit in

one of CR , CS in the direction of the tile where the other class belongs, join pair (CR ,CS ) should be

skipped, otherwise duplicate join results could be reported.

Proof. Consider two rectangles rR ∈ CR and rS ∈ CS . W.l.o.g. assume that tile TR of CR is
before tile of TS of CS in dimension d . If the first bit of CS is 1, then rS is also in tile T −1

S before TS

in dimension d ;T −1
S is guaranteed to be also joined withTR because it will have the same position

asTR in dimension d . Hence, if (rR , rS ) is a join pair it will be reported inTR � T −1
S . Symmetrically,

if TR of CR is after tile of TS of CS in dimension d , if (rR , rS ) is a join pair it will be reported in
T −1

R � TS . �

Based on Lemma 4, when joining two partitions TR and TS corresponding to different tiles, out
of the 256 class-class joins, we conduct (1) 48 joins if the tiles are next to each other (e.g., T

x,y
R
�

T
x−1,y
S

), and (2) just 16 joins if the tiles are diagonally to each other (e.g., T
x,y
R
� T

x−1,y−1
S

).

Summary and correctness. Figure 10 summarises the join process for identical grids, depicting
the pairs of classes checked for theT

x,y
R

partition and its 9 joinable S-partitions in TS . The grid tile

for T
x,y
R

is highlighted in dark gray and the 8 surrounding tiles by a red border, colored in light

gray. Each subfigure corresponds to one of the 16 CR classes of the T
x,y
R

partition. Moreover, for
each partition TS , we utilize the notation introduced in Figure 5 to show the sets of CS classes to
be examined.

We start with the T
x,y
R
� T

x,y
S

case. The contents of the dark grayed tile for each subfigure in
Figure 10 are determined according to Lemma 1:

(1) Figure 10(a), 10(b), 10(e), and 10(f) depict the sub-case when aCR class has 0 in the first bit on
both dimensions, i.e, the 0000, 0001, 0100 and 0101 classes, respectively. TheseT

x,y
R

classes

are joined with all classes from T
x,y
S

; we use the Type 4 notation from the table in Figure 5
to compactly denote all CS classes.
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Fig. 10. All sets of classes checked for joining partitionT
x,y
R

to partitionsT
x,y
S

andT
x ′,y′

S
partitions from the

8 surrounding tiles.

(2) Figure 10(k), 10(l), 10(o), and 10(p) show when a CR class has 1 in the first bit on both di-
mensions, i.e., the 1010, 1011, 1110 and 1111 classes, respectively. Such classes are joined
only with the 4 classes 0000, 0001, 0100, 0101 from T

x,y
S

that have a zero on these bits, i.e.,
denoted as the Type 8 classes from Figure 5.

(3) Figure 10(c), 10(d), 10(g), and 10(h) illustrate when a CR class has 1 in the first bit on the
y-dimension. Each of these classes are joined with a set of 8 classes with a 0 at the first bit
in the y-dimension, i.e., denoted by Type 7 in Figure 5.

(4) Figure 10(i), 10(j), 10(m), 10(n) illustrate when a CR class has 1 in the first bit on the x-
dimension. Similar to the sub-case above, each of these classes is joined with a set of 8 CS

classes denoted by Type 5 in Figure 5.

We continue with the T
x,y
R
� T

x ′,y′

S
case. We use Lemma 4 to determine which sets of classes

in the 8 surrounding tiles (light gray, in red border) are joined with the each class of the T
x,y
R

partition. Again, we use the notation from Figure 5 to compactly summarise these sets of classes.
Note that the S-partitions (and their classes) involved vary according to the current class inT

x,y
R

, to
avoid reporting duplicate results. For theCR = 0000 in Figure 10(a), all 8 surrounding S-partitions
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are needed for the join, albeit a different set of classes (type) for each partition. In contrast, for
CR = 0001 in Figure 10(b), we ignore the partitions (and their classes) in the top row of the
surrounding 8 S-partitions. Consider for example r2 in Figure 8, which falls under the 0001 class
in the T

x,y
R

partition. Assume for the sake of the example that dist(r2, s18) ≤ ϵ holds. The result

pair (r2, s18) will be identified both when examining the T
x,y
R

partition and for T
x,y+1
R

, where r2 is
classified in the 0010 class. Hence, to guarantee that (r2, s18) and all result pairs which include r2,

will be reported only once, we omit all three T
x,y
R
�� T

x−1,y+1
S

, T
x,y
R
�� T

x,y+1
S

and T
x,y
R
�� T

x+1,y+1
S

joins.
Finally, we discuss the correctness of our method. To this end, we introduce the following

theorem:

Theorem 3. The ϵ-distance join algorithm that joins each tile TR ∈ TR with its (up to) nine neigh-

boring tiles of TS , skips redundant class-join pairs and reduces class-join pairs, according to Lemmas

1–4 computes the correct ϵ-distance join result without producing any duplicate rectangle pairs.

Proof. The correctness of the individual tile-tile joins follows directly from the proofs of Lem-
mas 1–4. No join results will be missed because any pair of rectangles (rR , rS ), rR ∈ TR , rS ∈ TS in
non-neighboring tiles TR and TS having distance no more than ϵ , would expand into tiles T ′R and
T ′S which are neighbors and will be identified by the respective T ′R � T ′S join. �

Class-to-class spatial distance join. We also elaborate on the computation of the ϵ-distance join

between two classesCR andCS in two partitionsT
x,y
R

andT
x ′,y′

S
, respectively. If the two partitions

correspond to the same tile (i.e., x ′ = x and y ′ = y), then we expect most rectangle pairs to form
query results. Hence, we verify the distances between all pairs (r , s) ∈ CR ×CS and report the pairs
having distance at most ϵ . If x = x ′,y � y ′ then it must be |y − y ′| = 1, i.e., the two tiles are one
above the other. In this case, we apply an adaptation of the plane-sweep algorithm for intersection
joins [3, 7], after y-sorting the contents of each of CR and CS ; the adaptation identifies efficiently
the pairs of objects having y-distance at most ϵ and verifies each such pair by computing their
Euclidean distance. In all other cases, we apply the plane sweep adaptation after x-sorting and
sweeping along the x-axis.

Extensions. We finally discuss potentially extensions or modifications to the original setting.
Specifically, the above joining process can be also applied on grids of identical granularity, but
where the extents of the tiles are lower than ϵ in some dimension. Intuitively, the key difference in
this case is that we may have to consider additional levels around each tile of R and we may replace
some joins by cross-products. Finally, our ideas are also directly applied on distance self -joins [38],
where the objective is to find objects from the same dataset which are near each other.

5.2 Non-identical Grids

If the pre-existing grids on the input sets have different granularities, then our approach in
Section 5.1 is not directly applicable. A straightforward solution is to re-index one of the input
datasets, e.g. R, by creating a temporary secondary partitioning on top of a grid with a granularity
that matches the one in S ; a similar approach was employed in [45]. In this context, a key question
that naturally arises is which input we should re-index. The rule of thumb is to select the input
with either the smallest cardinality or the smallest average object extent, because such a decision
is expected to incur the lowest online indexing cost. Our experiments in Section 6 highlight the
importance of this decision; a poor selection of which input to re-index will drastically increase
the total execution time.

Alternatively however, we can completely avoid re-indexing one of the inputs and the
decision-making process (i.e., to determine which input to re-index) while still achieving a good
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Fig. 11. Online grid transformation: defining class 0000 for new partition T ′
S

.

performance for the R �� S distance join, by means of an online transformation. Assume that input
R is primarily indexed by an n × n grid, resulting in the set of primary partitions TR , and S , by an
m ×m one, resulting in set TS , with n < m. We assumem mod n = 0 holds; a simple workaround
this is to define the grid granularity in a power of 2. Under this premise, we can define an online
transformation of the finer grid to the coarser, by standard window range queries. Essentially,
after overlaying the two grids, every partition TR in TR overlaps a collection of exactly (m/n)2
adjacent partitions from TS . Consider for example Figure 12. The tiles defined by the bold lines
represent the coarser 4 × 4 grid for the TR partitions, while the thinner lines define tiles of the finer

16 × 16 grid for TS ; for the moment, ignore the symbols for the sets of classes (or types) and the
rest of the coloring. Observe how everyTR partition overlaps with exactly (16/4)2 = 16 partitions
from TS .

Now, to transform our secondary partitioning scheme of them ×m TS grid onto a new grid T ′S
that matches the granularity of the n × n TR grid, it suffices to

(1) evaluate a window range query for each partition T ′S ∈ T
′

S to determine the overlapping

(m/n)2 partitions from TS , and
(2) define the contents of each T ′S class based on the class contents of these overlapping

partitions.

While determining the overlapping partitions TS is straightforward, defining the contents of all
(m/n)2 classes in T ′S is challenging.

To clarify the challenges, we elaborate on the formation of the 0000 class in a newT ′S partition.

For each of the (m/n)2 overlapping TS partitions, only rectangles from the 0000, 0001, 0100,
0101 classes should be considered in the formation of the class, i.e., those that start inside every
overlapping TS partition on both axes which by definition also start inside T ′S . On the one hand,
the case of the 0000 rectangles in all these TS partitions is straightforward; every rectangle that
starts and ends inside the 0000 class of a TS , also starts and ends inside the new T ′S partition, by
definition. On the other hand though, this is not the case for the remaining 0001, 0100, 0101
classes in the overlapping TS partitions, as their rectangles are not guaranteed to also end inside
T ′S . We exemplify this issue in Figure 11. The tiles in the figure correspond to the 16 overlappingTS

partitions, T0 . . .T15, for a T ′S partition. The r2, r7 and r8 rectangles all start inside the T ′S partition
by definition, as they belong to the 0100 class in T1, the 0001 in T13 and the 0101 in T10, respec-
tively. However, these rectangles cannot be part of the 0000 class of T ′S as they extend beyond
its bounds.

Similar issues arise when determining the contents of the other 15 classes in T ′S as well.
Essentially, a series of additional comparisons and checks are required for this purpose, which will
affect the total execution time of the join. To avoid these checks, we devise an alternative approach
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Fig. 12. Online grid transformation: the case of 0x0x classes in TR .

for the online transformation that does not require to determine the contents of each new T ′S
partition. Intuitively, the key idea is to directly employ the join process described in Section 5.1
which utilizes the secondary partitionings on TR and T ′S under an identical n × n grid. We adjust
the process in Section 5.1 such that the pairs of classes checked for every TR �� T

′
S partition-to-

partition distance join are re-defined based on the (m/n)2 partitions from the originalm×m TS on
input S that overlap eachT ′S partition. We illustrate this approach for the online transformation in
Figures 12–15.

Intuitively, Figures 12–15 extend their Figure 10 counterparts based on the principle of the online
transformation:

— Figure 12(a), 12(b),12(c) and 12(d) extend Figure 10(a), 10(b), 10(e) and 10(f), respectively;
— Figure 13(a), 13(b), 13(c) and 13(d) extends Figure 10(c), 10(d), 10(g) and 10(h), respectively;
— Figure 14(a), 14(b), 14(c) and 14(d) extends Figure 10(i), 10(j), 10(m) and 10(n), respectively;
— Figure 15(a), 15(b), 15(c) and 15(d) extends Figure 10(k), 10(l), 10(o) and 10(p), respectively.
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Fig. 13. Online grid transformation: the case of 0x1x classes in TR .

Every tile in Figure 10 is essentially overlayed on top of 16 tiles from the TS grid in Figures 12–
15. Again, we highlight the current partition TR and its 16 overlayed TS partitions in dark gray.
Without loss of generality, we assume that the distance threshold ϵ is smaller than the projection
of the 4 × 4 tiles in both dimensions, similar to Figure 10. Therefore,TR is joined to theT ′S partition
from the same tile and the S partitions from the 8 surrounding tiles, highlighted in red. For each
class in TR , the figures show which TS partitions should be consider and specifically, which sets
of classes in them; similar to Section 5.1 and Figure 10, we utilize the notation from Figure 5 to
compactly mark these sets of classes.

To explain the join process, consider class 0000 forTR and juxtapose Figure 12(a) to Figure 10(a).
For the S partitions at the four corners of the joinable area (i.e., the 9 tiles highlighted in red), the
join process is a straightforward extension of the process in Figure 10(a). Specifically, the 0000
class from TR will be joined with Type 6 (X00X), Type 8 (0X0X), Type 2 (0XX0) and Type 0 (X0X0)
classes from the overlappingTS partitions, similar to Figure 10(a); we report the tiles in clockwise
order starting from the top-left corner. On the other hand, for the S partitions overlapping TR

ACM Trans. Spatial Algorithms Syst., Vol. 11, No. 1, Article 1. Publication date: November 2024.



1:24 A. Michalopoulos et al.

Fig. 14. Online grid transformation: the case of 1x0x classes in TR .

and the tiles over, below, to the left and to the right of TR , we cannot use the same class types
specified in Figure 10(a); such an approach will incur duplicates. In fact, the class types from
Figure 10(a) are applicable only for the TS partitions located in rows or columns at the borders of
these tiles. Let us denote TR partition as T

x,y
R

. Type 3 (X0XX) classes are only used for the bottom

row of the TS partitions defining partition T
′x−1,y
S

; Type 7 (XX0X) classes are only used for the

left column of partitions for T
′x,y+1
S

; Type 5 (0XXX) classes are used only for the bottom row in

T
′x+1,y
S

; and Type 1 (XXX0), only for the left column of the T
′x,y−1
S

partition. For the remaining

TS partitions which define the T
′x−1,y
S

, T
′x,y+1
S

, T
′x+1,y
S

, T
′x,y−1
S

partitions, we need to restrict the

number of classes to be joined with 0000 from T
x,y
R

(or simply TR in our example) by specifying
one extra bit in their binary encoding, again to avoid duplicate results. Finally, regarding the
TS partitions overlapping with TR , only the partition for bottom-left corner tile of the S grid
directly inherits the type of classes specified in Figure 10(a), i.e., Type 4 (XXXX); for the rest we
need to restrict the classes to be join with 0000 from TR either by specifying one or two extra
bits. The rest of the cases in Figure 12 and Figures 13–15 are determined in a similar fashion,
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Fig. 15. Online grid transformation: the case of 1x1x classes in TR .

appropriately adjusting the cases in Figure 10. Observe, for instance, how the first row of T ′S
(and their overlapping TS ) partitions are ignored in Figure 12(b) for class 0001 in TR , similar to
Figure 10(b).

6 Experimental Evaluation

We conducted our analysis on a dual Intel(R) Xeon(R) CPU E5-2630 v4, clocked at 2.20 GHz with
384 GBs of RAM, AlmaLinux 8.5. All indices were implemented in C++, compiled using gcc (v8.5.0)
with flags -O3, -mavx, and -march=native.

6.1 Setup

We experimented with the ZCTA5, RAILS, ROADS and EDGES Tiger 20151 from [14]; Table 2 sum-
marizes their characteristics. The objects in each dataset were normalized so that the coordinates

1http://spatialhadoop.cs.umn.edu/datasets.html
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Table 2. Datasets Used in the Experiments

TIGER 2015 dataset [14] type cardinality size
avg. relative [%]

x-extent y-extent

ZCTA5 polygons 33 K 1.1 MB 1.7 2.052
RAILS linetrings 157 K 5.3 MB 0.012 0.05

ROADS linetrings 17 M 564 MB 0.004 0.015
EDGES polygons 51 M 1.7 GB 0.002 0.007

in each dimension take values inside [0, 1]. The last two columns of Table 2 are the relative (over
the entire space) average length for every object’s MBR at each axis.

We implemented our secondary partitioning scheme as part of a main-memory regular grid
spatial index; we denote our scheme as 2-layer16. Although our approach can also be applied on
other SOP indices, such as the PMR quadtree [21], we do not include such an approach in the
comparison, as quadtrees were shown inferior to grids with and without two-layer partitioning
in [42]. As its main competitor, we considered the state-of-the-art DOP index: an in-memory STR-
bulkloaded [24] R-tree, from the highly optimized Boost Geometry library (boost.org).2, 3 The inner
and leaf nodes of the constructed trees have a capacity 16; this configuration is reported to perform
the best (we also confirmed this by testing). For ϵ-range queries, we also compared to the secondary
partitioning scheme from [42], which divides each partition into 4 classes (see Section 2.2); we
denote this scheme as 2-layer4.

To study the computation of NN and ϵ-range queries, we measure the average execution time
of 10 K queries over 10 runs. For NN queries, we vary the number of returned neighbors; in incre-
mental NN search, the neighbors are progressively determined as described in Section 4.1, while
in k-NN search, we set k accordingly. For the ϵ-range queries and the ϵ-distance joins, we vary ϵ
as a percentage of the entire data space, inside the {0.01%, 0.05%, 0.1%, 0.5%, 1%} value range.

6.2 Index Tuning

We first investigate the best granularity for a grid that uses our partitioning scheme. For this
purpose, we considered only the incremental NN search, for browsing the first 100, 1,000, and
10,000 neighbors. Figure 16 reports the total time for 10 K queries for different grid granularities,
i.e., number of partitions per dimension. In all cases, the search initially accelerates as the grid
becomes finer but slows down when the grid becomes too detailed. Based on the plots, we set the
number of partitions per dimension to 160 for ZCTA5, 400 for RAILS, 3,000 for ROADS and to
4,000 for EDGES, where the best performance is observed.

6.3 Query Processing

We now turn our focus to processing distance queries.

6.3.1 NN Search. Figures 17 and 18 compare the throughput of our 2-layer16 partitioning
against the R-tree, for incremental NN and k-NN search. At each experimental instance, for
each of the two compared methods, we report the average, minimum, and maximum perfor-
mance (throughput) for the tested query workload (shown as error bar). For the latter, 2-layer16 is
equipped with the μ-optimization described in Section 4.2.1.

2Recent benchmarks [26] showed the superiority of Boost.Geometry R-tree implementations over the ones in

libspatialindex.org.
3The analysis in [42] showed that R-tree is the most efficient DOP competitor, outperforming R*-tree (from the same

library).
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Fig. 16. Determining best grid granularity: incremental NN search for 100, 1,000 and 10,000 browsing

neighbors.

We observe that for both types of NN search, 2-layer16 steadily outperforms the R-tree; the latter
is competitive only when a small number of neighbors are browsed or requested on EDGES. Notice
that the performance gap also increases by the number of browsed neighbors up to one order of
magnitude, rendering 2-layer16 significantly more efficient for complex query plans which require
pipelining a large number of NNs to the next operator. As another observation, the k-NN 2-layer16

algorithm is faster than the incremental NN one. As we discussed in Section 4.2, knowing the
number of neighbors in advance allows the k-NN algorithm to prune objects and tiles, and even
returning a portion of the results without conducting any comparisons, using the μ-optimization
from Section 4.2.1. We also observe that for for small values of k 2-layer16 has higher variability in
its performance compared to the R-tree, while for large values of k the opposite holds. To interpret
this, we need to examine how the algorithms operate in both best and worst scenarios. The worst
scenarios for 2-layer16 occur when the query belongs to a neighborhood with very sparse data
(where the tile has no nearby tiles with spatial objects) or to a tile with dense data and a small
k . In both scenarios, 2-layer16 method performs poorly: in the first case, it needs to expand the
grid space to find results, and in the second, it needs to calculate all distances from the spatial
objects within the tile. The worst-case scenario for an R-tree occurs when the value of k is large,
as it requires visiting numerous nodes to obtain the desired result. The best-case scenario for
2-layer16 occurs when there are at leastk objects within the query’s tile or its immediate neighbors.
Meanwhile, the optimal scenario for an R-tree is when k is smaller than the size of its leaf nodes,
allowing it to find the result immediately with just one traversal. The above justify the behavior
of the two algorithms with respect to their best-case and worst-case performance.
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Fig. 17. Incremental NN search.

Finally, we also investigate the scalability of the indexing methods. We considered for this
purpose the incremental NN search; we observed similar findings for k-NN. Figure 19 reports the
results on our largest datasets ROADS and EDGES from Table 2; we ran our experiments over
random samples comprising 20%, 40%, 60%, 80%, and 100% of the objects. The plots demonstrate
that both methods exhibit good scalability when the dataset size varies, but 2-layer16 outperforms
the R-tree in all cases.

6.3.2 ϵ-range Queries. Next, we study the computation of ϵ-range queries. We compare our
2-layer16 partitioning against the secondary partitioning from [42] and the R-tree. Figure 20 re-
ports the throughput of each query processing method while varying the ϵ parameter. Our analysis
confirms the results of [42], i.e., 2-layer4, always outperforms the R-tree. Most importantly though,
2-layer16 is the fastest method, steadily outperforming 2-layer4. This finding clearly shows the ben-
efit of the new class decomposition into 16 classes, which, (1) as opposed to [42], facilitates NN
and distance join queries and (2) is superior to [42] for ϵ-range queries.

6.3.3 ϵ-distance Joins. We lastly investigate the computation of distance joins. For this pur-
pose, we consider two alternative settings; when neither of the R, S inputs is indexed and when
both are.

Under the first setting, the computation of an R �� S distance join becomes a two-step process.
Initially, the inputs are temporarily partitioned by two identical grids on top of which our
secondary partitioning scheme is built, and then, the process described in Section 5.1 is directly
applied. We experiment with four pairs of inputs to define our join queries; ZCTA5 �� ROADS,
ZCTA5 �� EDGES, RAILS �� ROADS and RAILS �� EDGES. Figure 21 reports the total processing
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Fig. 18. k-NN search.

Fig. 19. Incremental NN search; scalability experiment.

time for different values of the ϵ threshold, while varying the granularity of the online grid; at the
top of every plot, we also report the total indexing cost. Naturally in all tests, this total indexing
cost always rises with the increase of the grid granularity due to the higher replication factor. On
the other hand, all joins initially benefit from utilizing a finer grid and therefore, the joining time
initially drops, but later on the joining process becomes increasingly more expensive, due to the
large number of partition-to-partition and class-to-class joins defined in grids of higher granular-
ity. The optimal grid granularity, i.e., the optimal number of partitions per dimension, is dictated
by the input whose indexing cost is more likely to be drastically affected by increasing the grid
granularity. In case of RAILS �� ROADS and RAILS �� EDGES, building our two-layer partitioning
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Fig. 20. ϵ-range queries.

scheme takes longer on ROADS and EDGES compared to RAILS. Therefore, the best performance
is observed roughly for a 2000 × 2000 grid, which is very close to the optimal grid granularity used
individually in ROADS and EDGES for NN search and ϵ-range queries, see Figure 16. In contrast,
for ZCTA5 �� ROADS and ZCTA5 �� EDGES, the indexing of ZCTA5 is severely affected by the
increase of the grid granularity because of replicating its large rectangles to increasingly more grid
tiles. Observe how the total query processing is completely dominated by the indexing costs in the
top row of Figure 21 after the 500 × 500 grid. In fact, the best performance is observed for this 500 ×
500 grid, which is similar to the 160× 160 optimal grid applied in ZCTA5 for NN search and ϵ-range
queries.

We next study the second setting, when both R, S inputs are indexed in advance for answering
frequent distance queries such as NN and ϵ-range. We distinguish between two cases based on the
existing indexing; either an R-tree exists on each input dataset, which is the most dominant DOP
index, or a two-layer partitioning scheme. For the former, we modify the classic R-tree overlap
join algorithm in [7] to compute ϵ-distance joins. For the latter, we assume that the granularity of
the underlying grid is set to achieve the best performance for NN or ϵ-range queries and employ
our methods proposed in Section 5. We experimented again with the ZCTA5 �� ROADS, ZCTA5
�� EDGES, RAILS �� ROADS, and RAILS �� EDGES distance joins. In all four queries, the underly-
ing grids for the inputs are built on different granularities according to Figure 16. Therefore, we
consider three approaches to compute an R �� S distance join:

(1) build a temporary two-layer scheme for R on top of a grid that matches the granularity of S
and then apply the join process discussed in Section 5.1 for identical grids;
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Fig. 21. ϵ-distance joins: the case of unindexed inputs; plot lines show the total querying time and number

at the top, the total indexing cost.

(2) build a temporary two-layer scheme for S on top of a grid that matches the granularity of R
and then apply the join process discussed in Section 5.1 for identical grids;

(3) use the online transformation described in Section 5.2.

For the third approach, we slightly modify the granularity of ROADS grid to be 3200 instead of
3000.

Figure 22 reports the total time of each approach on the four join queries, while varying the
value of the ϵ distance threshold. In addition, Table 3 reports the online indexing costs that occur
when a temporary two-layer scheme is built. With respect to the existing indexing, the first
observation is that R-trees are either the least or second to last efficient indices for the distance
join queries. In combination to our tests on NN search and ϵ-range queries, we can overall discard
R-tree as an efficient indexing for distance queries. Regarding our two-layer partitioning, the ex-
periments back up our arguments from Section 5.2. Specifically, they showcase how critical is the
decision which input should be re-indexed, in other words for which input a temporary two-layer
scheme should be built. When the correct decision is made, i.e., re-indexing ROADS, EDGES for
ZCTA5 �� ROADS, ZCTA5 �� EDGES, and RAILS �� ROADS, RAILS �� EDGES, our join algorithm
on top of the secondary partitioning achieves the best performance. However, if a poor decision is
made, the performance of the secondary partitioning can be very similar to that of R-tree join even
orders of magnitude worst, as she we observe in the case of re-indexing ZCTA5. Due to its large
rectangles, the online indexing costs of ZCTA5 to a grid that matches the granularity of ROADS
or EDGES are extremely high as the replication fact drastically increases (see Table 3); note that
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Fig. 22. ϵ-distance joins: the case of indexed inputs.

Table 3. ϵ-distance Joins: Online Indexing Costs for

the Case of Indexed Inputs [Secs]

query R �� S re-index R re-index S

ZCTA5 �� ROADS 215 0.41
ZCTA5 �� EDGES 337 1.27
RAILS �� ROADS 0.23 0.41
RAILS �� EDGES 0.35 1.36

the best grid granularity for ZCTA5 is 160, while for ROADS and EDGES is 3,000 and 4,000,
respectively.

On the other hand, the plots also show that we can always ensure fast join computation using the
online transformation. The performance of the transformation matches the performance of the re-
index approach with the best decision or even exceeds it in case of high values of ϵ . An additional
advantage of the online transformation is in terms of space; no additional space is required as none
of the inputs are re-indexed.

6.4 Index Building, Size, and Maintenance

Figure 23 reports on the index building costs for the tested datasets. We compare the indexing time
of our proposed partitioning scheme 2-layer16 against the 2-layer4 scheme from [42]. For refer-
ence, we also include the bulk-loading cost for the R-tree. As expected, due to decomposing every
partition into 16 classes instead of 4, the new 2-layer16 scheme exhibits a higher indexing time. Nev-
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Fig. 23. Indexing cost and tuning.

ertheless, the building cost of 2-layer16 is significantly lower than that of the R-tree in most cases
with the exception of ZCTA5, which contains very few rectangles. Note that the index size of the
two 2-layer schemes is identical as the total number of entries inside the classes remains the same.

Figure 24 presents the memory space required by each index. As observed, the R-tree requires
less memory because it does not replicate the data. Both 2-layer16 and 2-layer4 exhibit the same
memory usage, as they replicate the same amount of data. The memory usage increases in the
2-layer16 versions as the grid size increases, which is expected because larger grids entail more
data replication. Despite this, grids are preferred to R-trees due to their superior query perfor-
mance as shown in the previous experiments for distance queries and in [42] for simple range
queries.

Finally, regarding index maintenance, we expect a similar trend to index building. The analysis
in [42] showed that 2-layer4 has much faster updates than the R-tree. We expect also 2-layer16 to
outperform the R-tree for updates but exhibit slightly higher time compared to 2-layer4, due to
maintaining more classes.

7 Conclusions

We presented a secondary partitioning technique for space-oriented partitioning indices, which di-
vides the contents of each partition into 16 classes based on the begin and end points of the object
MBRs with respect to the partition boundaries. We proposed algorithms for distance queries (NN,
distance range, and distance joins) that take advantage of our technique to compute query results
efficiently and without producing duplicates. Our evaluation using real datasets confirms the su-
periority of our approach compared to previous work. Note that our approach can be generalized
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Fig. 24. Memory usage experiment.

to apply on d-dimensional spaces, for d > 2. For d-dimensional bounding boxes, indexed by a d-
dimensional grid, the number of classes in each cell is 4d and the classes that are selected in each
cell depend on the direction of the cell w.r.t. q in each dimension. Still, in higher dimensionalities
than 2, we seldom find applications with non-point objects. In the future, we plan to investigate
the applicability of our approach for more advanced distance-based queries, such as closest-pair
queries [11] and iceberg distance joins [39].
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